![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials
This book represents a collection of papers presented at the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017), a specialty conference organized by The Minerals, Metals & Materials Society (TMS). The contributions offer topics relevant to the global advancement of ICME as an engineering discipline. Topics covered include the following:ICME Success Stories and ApplicationsVerification, Validation, Uncertainty Quantification Issues and Gap AnalysisIntegration Framework and UsageAdditive ManufacturingPhase Field ModelingMicrostructure EvolutionICME Design Tools and ApplicationMechanical Performance Using Multi-Scale Modeling
This book covers the complete spectrum of the fundamentals of clocked, regenerative comparators, their state-of-the-art, advanced CMOS technologies, innovative comparators inclusive circuit aspects, their characterization and properties. Starting from the basics of comparators and the transistor characteristics in nanometer CMOS, seven high-performance comparators developed by the authors in 120nm and 65nm CMOS are described extensively. Methods and measurement circuits for the characterization of advanced comparators are introduced. A synthesis of the largely differing aspects of demands on modern comparators and the properties of devices being available in nanometer CMOS, which are posed by the so-called nanometer hell of physics, is accomplished. The book summarizes the state of the art in integrated comparators. Advanced measurement circuits for characterization will be introduced as well as the method of characterization by bit-error analysis usually being used for characterization of optical receivers. The book is compact, and the graphical quality of the illustrations is outstanding. This book is written for engineers and researchers in industry as well as scientists and Ph.D students at universities. It is also recommendable to graduate students specializing on nanoelectronics and microelectronics or circuit design.
Topological Insulators (TIs) are insulators in the bulk, but have exotic metallic states at their surfaces. The topology, associated with the electronic wavefunctions of these systems, changes when passing from the bulk to the surface. This work studies, by means of infrared spectroscopy, the low energy optical conductivity of Bismuth based TIs in order to identify the extrinsic charge contribution of the bulk and to separate it from the intrinsic contribution of the surface state carriers. The extensive results presented in this thesis definitely shows the 2D character of the carriers in Bismuth-based topological insulators. The experimental apparatus and the FTIR technique, the theory of optical properties and Surface Plasmon Polaritons, as well as sample preparation of both crystals and thin films, and the analysis procedures are thoroughly described.
This collection of recent activities provides researchers and scientists with the latest trends in characterization and developments of composed materials and structures. Here, the expression 'composed materials' indicates a wider range than the expression 'composite material' which is many times limited to classical fibre reinforced plastics. The idea of composed structures and materials is to join different components in order to obtain in total better properties than one of the single constituents can provide. In this collection, well known experts present their research on composed materials such as textile composites, sandwich plates, hollow sphere structures, reinforced concrete as well as classical fibre reinforced materials.
This is the second edition of "Melt Rheology and its Role in Plastics Processing," although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that will be of direct use to practitioners. Extensive references are provided for those wishing to pursue certain issues in greater depth. While the primary audience is applied polymer scientists and plastics engineers, the book will also be of use to postgraduate students in polymer science and engineering and as a text for a graduate course.
The book explores the state of the art in the mechanics of fibrous media, providing an overview of the theoretical, modelling and practical aspects of designing and working with these materials. It also describes the advanced methods needed to handle their specific features, including the mechanics of generalized continua, dedicated homogenization methods and computational techniques, and presents applications of fibrous media to diverse fields and over a broad spectrum of scales, ranging from aeronautics to biomechanics.
This book reviews various aspects of molecular spectroscopy and its application in materials science, chemistry, physics, medicine, the arts and the earth sciences. Written by an international group of recognized experts, it examines how complementary applications of diverse spectroscopic methods can be used to study the structure and properties of different materials. The chapters cover the whole spectrum of topics related to theoretical and computational methods, as well as the practical application of spectroscopic techniques to study the structure and dynamics of molecular systems, solid-state crystalline and amorphous materials, surfaces and interfaces, and biological systems. As such, the book offers an invaluable resource for all researchers and postgraduate students interested in the latest developments in the theory, experimentation, measurement and application of various advanced spectroscopic methods for the study of materials.
This unique book covers the fundamental principle of electron diffraction, basic instrumentation of RHEED, definitions of textures in thin films and nanostructures, mechanisms and control of texture formation, and examples of RHEED transmission mode measurements of texture and texture evolution of thin films and nanostructures. Also presented is a new application of RHEED in the transmission mode called RHEED pole figure technique that can be used to monitor the texture evolution in thin film growth and nanostructures and is not limited to single crystal epitaxial film growth. Details of the construction of RHEED pole figures and the interpretation of observed pole figures are presented. Materials covered include metals, semiconductors, and thin insulators. This book also: Presents a new application of RHEED in the transmission mode Introduces a variety of textures from metals, semiconductors, compound semiconductors, and their characteristics in RHEED pole figures Provides examples of RHEED measurements of texture and texture evolution, construction of RHEED pole figures, and interpretation of observed pole figures RHEED Transmission Mode and Pole Figures: Thin Film and Nanostructure Texture Analysis is ideal for researchers in materials science and engineering and nanotechnology.
The idea of this monograph is to present the latest results related to design and computation of engineering materials and structures. The contributions cover the classical fields of mechanical, civil and materials engineering up to biomechanics and advanced materials processing and optimization. The materials and structures covered can be categorized into modern steels and titanium alloys, composite materials, biological and natural materials, material hybrids and modern joining technologies. Analytical modelling, numerical simulation, the application of state-of-the-art design tools and sophisticated experimental techniques are applied to characterize the performance of materials and to design and optimize structures in different fields of engineering applications.
The purpose of this book is to bridge the gap between the traditional Geomechanics and Numerical Geotechnical Modelling with applications in science and practice. Geomechanics is rarely taught within the rigorous context of Continuum Mechanics and Thermodynamics, while when it comes to Numerical Modelling, commercially available finite elements or finite differences software utilize constitutive relationships within the rigorous framework. As a result, young scientists and engineers have to learn the challenging subject of constitutive modelling from a program manual and often end up with using unrealistic models which violate the Laws of Thermodynamics. The book is introductory, by no means does it claim any completeness and state of the art in such a dynamically developing field as numerical and constitutive modelling of soils. The author gives basic understanding of conventional continuum mechanics approaches to constitutive modelling, which can serve as a foundation for exploring more advanced theories. A considerable effort has been invested here into the clarity and brevity of the presentation. A special feature of this book is in exploring thermomechanical consistency of all presented constitutive models in a simple and systematic manner.
Proceedings of the Thirteenth Latin American Conference on the Applications of the Moessbauer Effect, Medellin, Colombia, November 11-16, 2012. The broad scope of the Applications of the Moessbauer Effect to interdisciplinary subjects makes this volume an outstanding source of information to researchers and graduate students, who will find the unique results of Moessbauer spectroscopy a valuable aid and complement to their research in conjunction with other techniques. In this volume, applications to mineralogy, catalysis, soil science, amorphous materials, nanoparticles, magnetic materials, nanotechnology, metallurgy, corrosion, and magnetism, have been put together in original works produced by invited speakers and different research teams across the continent. Reprinted from Hyperfine Interactions (HYPE) Volume
This thesis proposes novel designs of phononic crystal plates (PhPs) allowing ultra-wide controllability frequency ranges of guided waves at low frequencies, with promising structural and tunability characteristics. It reports on topology optimization of bi-material-layered (1D) PhPs allowing maximized relative bandgap width (RBW) at target filling fractions and demonstrates multiscale functionality of gradient PhPs. It also introduces a multi-objective topology optimization method for 2D porous PhPs allowing both maximized RBW and in-plane stiffness and addresses the critical role of considering stiffness in designing porous PhPs. The multi-objective topology optimization method is then expanded for designing 2D porous PhPs with deformation induced tunability. A variety of innovative designs are introduced which their maximized broadband RBW is enhanced by, is degraded by or is insensitive to external finite deformation. Not only does this book address the challenges of new topology optimization methods for computational design of phononic crystals; yet, it demonstrated the suitability and applicability of the topological designs by experimental validation. Furthermore, it offers a comprehensive review of the existing optimization-based approaches for the design of finite non-periodic acoustic metamaterial structures, acoustic metamaterial lattice structures and acoustic metamaterials under perfect periodicity.
This book covers a variety of topics in mechanics, with a special emphasis on material mechanics. It reports on fracture mechanics, fatigue of materials, stress-strain behaviours, as well as transferability problems and constraint effects in fracture mechanics. It covers different kind of materials, from metallic materials such as ferritic and austenitic steels, to composites, concrete, polymers and nanomaterials. Additional topics include heat transfer, quality control and reliability of structures and components. Furthermore, the book gives particular attention to new welding technologies such as STIR welding and spray metal coating, and to novel methods for quality control, such as Taguchi design, fault diagnosis and wavelet analysis. Based on the 2015 edition of the Algerian Congress of Mechanics (Congres Algerien de Mecanique, CAM), the book also covers energetics, in terms of simulation of turbulent reactive flow, behaviour of supersonic jet, turbulent combustion, fire induced smoke layer, and heat and mass transfer, as well as important concepts related to human reliability and safety of components and structures. All in all, the book represents a complete, practice-oriented reference guide for both academic and professionals in the field of mechanics.
An extremely useful guide to the theory and applications of transport phenomena in materials processing This book defines the unique role that transport phenomena play in materials processing and offers a graphic, comprehensive treatment unlike any other book on the subject. The two parts of the text are, in fact, two useful books. Part I is a very readable introduction to fluid flow, heat transfer, and mass transfer for materials engineers and anyone not yet thoroughly familiar with the subject. It includes governing equations and boundary conditions particularly useful for studying materials processing. For mechanical and chemical engineers, and anyone already familiar with transport phenomena, Part II covers the many specific applications to materials processing, including a brief description of various materials processing technologies. Readable and unencumbered by mathematical manipulations (most of which are allocated to the appendixes), this book is also a useful text for upper-level undergraduate and graduate-level courses in materials, mechanical, and chemical engineering. It includes hundreds of photographs of materials processing in action, single and composite figures of computer simulation, handy charts for problem solving, and more. Transport Phenomena and Materials Processing:
This thesis introduces a series of novel, non-conjugated polyarylether hosts that are not subject to the triplet-energy limitations of traditional conjugated polymer hosts. As a result of this major breakthrough, the long-standing problem of triplet energy back transfer has now been overcome, making it possible to design high-efficiency electrophosphorescent polymers (PhPs), especially the blue and all-phosphorescent white ones. In addition, the author proposes a spiro-linked hyperbranched architecture for PhPs to inhibit the undesired triplet energy back transfer process in low triplet-energy hosts. The work in this thesis provides vital new insights into the design of PhPs and has led to several publications in high-profile journals.
This book focuses on the justification and refinement of highly diverse approximate dynamic models for engineering structures arising in modern technology, including high-tech domains involving nano- and meta-materials. It proposes a classification for vibration spectra over a broad frequency domain and evaluates the range of validity of various existing 2D theories for thin-walled shells by comparing them with 3D benchmark solutions. The dynamic equations in 3D elasticity are applied to the analysis of harmonic vibrations in hollow bodies with canonical shapes. New exact homogeneous and inhomogeneous solutions are derived for cylinders, spheres and cones (including spherical and conical layers), as well as for plates of variable thickness. The book includes a wealth of numerical examples, as well as refined versions of 2D dynamic formulations. Boundary value problems for hollow bodies are also addressed.
This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials. Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.
This thesis constitutes a detailed study of functional nanostructures (ferromagnetic, superconducting, metallic and semiconducting) fabricated by focused electron/ion beam induced deposition techniques. The nanostructures were grown using different precursor materials such as Co2(CO)8, Fe2(CO)9, W(CO)6, (CH3)3Pt(CpCH3), C10H8and were characterized by a wide range of techniques. This work reports results obtained for the morphology, the microstructure, the composition, the electrical transport mechanism, magnetic and superconducting properties of nanostructures. The results offers exciting prospects in a wide range of applications in nanotechnology and condensed matter physics.
This book presents the main outcomes of the first European research project on the seismic behavior of adjustable steel storage pallet racking systems. In particular, it describes a comprehensive and unique set of full-scale tests designed to assess such behavior. The tests performed include cyclic tests of full-scale rack components, namely beam-to-upright connections and column base connections; static and dynamic tests to assess the friction factor between pallets and rack beams; full-scale pushover and pseudodynamic tests of storage racks in down-aisle and cross-aisle directions; and full-scale dynamic tests on two-bay, three-level rack models. The implications of the findings of this extensive testing regime on the seismic behavior of racking systems are discussed in detail, highlighting e.g. the confirmation that under severe dynamic conditions "sliding" is the main factor influencing rack response. This work was conceived during the development of the SEISRACKS project. Its outcomes will contribute significantly to increasing our knowledge of the structural behavior of racks under earthquake conditions and should inform future rack design.
This volume contains the proceedings of the 5th International Symposium on Symmetries in Subatomic Physics (SSP2012), that was held in Groningen, The Netherlands from 18 till 22 June 2012. This sequence of symposia is now firmly connected with one of the main branches in fundamental nuclear and particle physics, i.e. in searches for physics beyond the Standard Model, focused on the (violation of) the discrete symmetries of Parity, Charge conjugation and Time reversal invariance. This field comes in various disguises: With large experimental facilities and large collaborations, as in LHC physics or in neutrino experiments, but also as table top experiments by small groups in the field of nuclear, atomic and molecular physics, such as in searches for a permanent electric dipole moments and atomic parity violation. Bringing the practitioners of these divergent fields together gives a coherent overview and see the complementarities of the various approaches to the same question: why is the Standard Model what it is and what lies beyond it. "
This book provides best-practice guidance and practical recommendations on the use of numerical simulation for probability of detection (POD) curve estimation in the study of non-destructive testing reliability. It focuses on ultrasonic testing (UT) weld inspection but many of the principles can be applied to a broader range of techniques and situations. The first part lists and briefly describes the principal documents that establish the recommended statistical framework adapted for POD curve estimation. It also presents the most important initiatives on the model assisted probability of detection (MAPOD) approach in recent years. The second part provides details of the advantages and limitations of the simulation in this context. The third part then describes the prerequisites for the use of simulation (validation of the software, expertise of the user), and the fourth and main part offers the methodology and guidance as well as possible applications for using POD curves determined using simulation.
This book provides a line of communication between academia and end users/practitioners to advance forensic science and boost its contribution to criminal investigations and court cases. By covering the state of the art of promising technologies for the analysis of trace evidence using a controlled vocabulary, this book targets the forensics community as well as, crucially, informing the end users on novel and potential forensic opportunities for the fight against crime. By reporting end users commentaries at the end of each chapter, the relevant academic community is provided with clear indications on where to direct further technological developments in order to meet the law requirements for operational deployment, as well as the specific needs of the end users. Promising chemistry based technologies and analytical techniques as well as techniques that have already shown to various degrees an operational character are covered. The majority of the techniques covered have imaging capabilities, that is the ability to visualize the distribution of the target molecules within the trace evidence recovered. This feature enhances intelligibility of the information making it also accessible to a lay audience such as that typically found with a court jury. Trace evidence discussed in this book include fingermarks, bodily fluids, hair, gunshot residues, soil, ink and questioned documents thus covering a wide range of possible evidence recovered at crime scenes.
This book provides a comparison between melt electrospinning and meltblowing as techniques for the production of polypropylene nanofibers. The author compares the morphological, structural, chemical and mechanical characteristics of the different produced fibers. Moreover, the degree of thermal degradation of the different fibers is also analyzed. The book is useful to chemists and material scientists working on the synthesis of nanofibers by melt processes, showing the limitations of each technique for nanofiber fabrication.
Proceedings of the 4th Joint International Conference on Hyperfine Interactions and International Symposium on Nuclear Quadrupole Interactions, HFI/NQI 2012 held in Beijing, China, September 10-14, 2012. The hyperfine interaction between the atomic nucleus and the surrounding charge distribution and the magnetic fields at the site of the nucleus remains a topic of high scientific interest. To this we have to add the field of nuclear quantum optics where the hyperfine interaction takes place between the atomic nucleus and synchrotron radiation. The study of this hyperfine interaction allows to shift the existing borders of scientific insight both in the properties of the atomic nucleus as in the properties of the solids and liquids in which it is imbedded. The 47 scientific contributions in this book describe studies presented at the HFI/NQI2012 conference. These studies are devoted to topics such as nuclear moments, nuclear polarization, fundamental interactions, magnetism and magnetic materials, semiconductors, metals, insulators, practical applications, developments in methodology and new directions in the field of hyperfine interactions.
This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author's intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers. |
You may like...
New Opportunities for Sentiment Analysis…
Aakanksha Sharaff, G. R. Sinha, …
Hardcover
R6,648
Discovery Miles 66 480
Geospatial Abduction - Principles and…
Paulo Shakarian, V.S. Subrahmanian
Hardcover
R1,408
Discovery Miles 14 080
Introduction to Text Visualization
Nan Cao, Weiwei Cui
Hardcover
Towards Analytical Techniques for…
L. Octavio Lerma, Vladik Kreinovich
Hardcover
R3,094
Discovery Miles 30 940
Recent Developments and New Direction in…
Lotfi A. Zadeh, Ali M. Abbasov, …
Hardcover
R4,149
Discovery Miles 41 490
Intelligent Agents in Data-intensive…
Joanna Kolodziej, Luis Correia, …
Hardcover
Clustering Methods for Big Data…
Olfa Nasraoui, Chiheb-Eddine Ben N'Cir
Hardcover
R3,985
Discovery Miles 39 850
Advances in Mobile Cloud Computing and…
Constandinos X. Mavromoustakis, George Mastorakis, …
Hardcover
R5,113
Discovery Miles 51 130
|