![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics
Beginning with Nobel laureate I. Prigogine's lecture "Entropy Revisited", this book gives a well-balanced survey on capillarity properties at liquid and solid interfaces. It approaches the subject from both the microscopic (statistical mechanics) and the macroscopic (mechanics and thermodynamics) points of view. Experimental aspects and technological applications are also presented. The book addresses researchers and graduate students of physics and physical chemistry.
The emphasis of this book is on engineering aspects of fluid turbulence. The book explains for example how to tackle turbulence in industrial applications. It is useful to several disciplines, such as, mechanical, civil, chemical, aerospace engineers and also to professors, researchers, beginners, under graduates and post graduates. The following issues are emphasized in the book: - Modeling and computations of engineering flows: The author discusses in detail the quantities of interest for engineering turbulent flows and how to select an appropriate turbulence model; Also, a treatment of the selection of appropriate boundary conditions for the CFD simulations is given. - Modeling of turbulent convective heat transfer: This is encountered in several practical situations. It basically needs discussion on issues of treatment of walls and turbulent heat fluxes. - Modeling of buoyancy driven flows, for example, smoke issuing from chimney, pollutant discharge into water bodies, etc
Large-scale winds and currents tend to balance Coriolis and pressure gradient forces. The time evolution of these winds and currents is the subject of the quasi-geostrophic theory. Chapter 1 presents concepts and equations of classical inertial fluid mechanics. Chapter 2 deals with the equations of thermodynamics that close the governing equations of the fluids. Then, the motion is reformulated in a uniformly rotating reference frame. Chapter 3 deals with the shallow-water model and the homogeneous model of wind-driven circulation. The chapter also describes a classical application of the Ekman layer to the atmosphere. Chapter 4 considers the two-layer model, as an introduction to baroclinic flows, together with the concept of available potential energy. Chapter 5 takes into account continuously stratified flows in the ocean and in the atmosphere.
This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi-layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE-like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.
Starting from basic principles, the book covers a wide variety of topics, ranging from Heisenberg, Schroedinger, second quantization, density matrix and path integral formulations of quantum mechanics, to applications that are (or will be) corner stones of present and future technologies. The emphasis is on spin waves, quantum information, recent tests of quantum physics and decoherence. The book provides a large amount of information without unbalancing the flow of the main ideas by laborious detail.
This textbook takes an interdisciplinary approach to the subject of thermodynamics and is therefore suitable for undergraduates in chemistry, physics and engineering courses. The book is an introduction to phenomenological thermodynamics and its applications to phase transitions and chemical reactions, with some references to statistical mechanics. It strikes the balance between the rigorousness of the Callen text and phenomenological approach of the Atkins text. The book is divided in three parts. The first introduces the postulates and laws of thermodynamics and complements these initial explanations with practical examples. The second part is devoted to applications of thermodynamics to phase transitions in pure substances and mixtures. The third part covers thermodynamic systems in which chemical reactions take place. There are some sections on more advanced topics such as thermodynamic potentials, natural variables, non-ideal mixtures and electrochemical reactions, which make this book of suitable also to post-graduate students.
This thesis presents a novel coarse-grained model of DNA, in which bases are represented as rigid nucleotides. The model is shown to quantitatively reproduce many phenomena, including elastic properties of the double-stranded state, hairpin formation in single strands and hybridization of pairs of strands to form duplexes, the first time such a wide range of properties has been captured by a coarse-grained model. The scope and potential of the model is demonstrated by simulating DNA tweezers, an iconic nanodevice, and a two-footed DNA walker - the first time that coarse-grained modelling has been applied to dynamic DNA nanotechnology.
This book brings new scientific methods to intelligence research that is still under the influence of 19th century single causal theory and method. The author describes a rigorous and exhaustive classification of natural intelligence while demonstrating a more adequate scientific and mathematical approach than current statistical and psychometric approaches construct to shore up the out-dated and misused IQ hypothetical. The author demonstrates the superiority of a highly developed multidisciplinary-theory models view of intelligence.
Entransy in Phase-Change Systems summarizes recent developments in the area of entransy, especially on phase-change processes. This book covers new developments in the area including the great potential for energy saving for process industries, decreasing carbon dioxide emissions, reducing energy bills and improving overall efficiency of systems. This concise volume is an ideal book for engineers and scientists in energy-related industries.
The domain of non-extensive thermostatistics has been subject to intensive research over the past twenty years and has matured significantly. Generalised Thermostatistics cuts through the traditionalism of many statistical physics texts by offering a fresh perspective and seeking to remove elements of doubt and confusion surrounding the area. The book is divided into two parts - the first covering topics from conventional statistical physics, whilst adopting the perspective that statistical physics is statistics applied to physics. The second developing the formalism of non-extensive thermostatistics, of which the central role is played by the notion of a deformed exponential family of probability distributions. Presented in a clear, consistent, and deductive manner, the book focuses on theory, part of which is developed by the author himself, but also provides a number of references towards application-based texts. Written by a leading contributor in the field, this book will provide a useful tool for learning about recent developments in generalized versions of statistical mechanics and thermodynamics, especially with respect to self-study. Written for researchers in theoretical physics, mathematics and statistical mechanics, as well as graduates of physics, mathematics or engineering. A prerequisite knowledge of elementary notions of statistical physics and a substantial mathematical background are required.
This set of lectures provides an introduction to the structure, thermodynamics and dynamics of liquid binary solutions and polymers at a level that will enable graduate students and non-specialist researchers to understand more specialized literature and to possibly start their own work in this field. Part I starts with the introduction of distribution functions, which describe the statistical arrangements of atoms or molecules in a simple liquid. The main concepts involve mean field theories like the Perkus-Yevick theory and the random phase approximation, which relate the forces to the distribution functions. In order to provide a concise, self-contained text, an understanding of the general statistical mechanics of an interacting many-body system is assumed. The fact that in a classic liquid the static and dynamic aspects of such a system can be discussed separately forms the basis of the two-fold structure of this approach. In order to allow polymer melts and solutions to be discussed, a short chapter acquaints readers with scaling concepts by discussing random walks and fractals. Part II of the lecture series is essentially devoted to the presentation of the dynamics of simple and complex liquids in terms of the generalized hydrodynamics concept, such as that introduced by Mori and Zwanzig. A special topic is a comprehensive introduction of the liquid-glass transition and its discussion in terms of a mode-coupling theory.
These are the succeeding volumes of a series of books on thermodynamic properties of engineering materials prepared under the auspices of the State Service of Standard Reference data of the Soviet Union. Each volume is set up in the same way: Part I deals with a study of all necessary aspects of experimental data interpretation and analysis; Part II then presents the fundamental constants, symbols with units, and data tables. Researchers and engineers in the fields of process design, equipment development, custody transfer and safety will find these book valuable and reliable reference sources for their respective tasks.
The concept of phase space plays a decisive role in the study of the transition from classical to quantum physics. This is particularly the case in areas such as nonlinear dynamics and chaos, geometric quantization and the study of the various semi-classical theories, which are the setting of the present volume. Much of the content is devoted to the study of the Wigner distribution. This volume gives the first complete survey of the progress made by both mathematicians and physicists. It will serve as an excellent reference for further research.
This book has grown out of eight years of close collaboration among its authors. From the very beginning we decided that its content should come out as the result of a truly common effort. That is, we did not "distribute" parts of the text planned to each one of us. On the contrary, we made a point that each single paragraph be the product of a common reflection. Genuine team-work is not as usual in philosophy as it is in other academic disciplines. We think, however, that this is more due to the idiosyncrasy of philosophers than to the nature of their subject. Close collaboration with positive results is as rewarding as anything can be, but it may also prove to be quite difficult to implement. In our case, part of the difficulties came from purely geographic separation. This caused unsuspected delays in coordinating the work. But more than this, as time passed, the accumulation of particular results and ideas outran our ability to fit them into an organic unity. Different styles of exposition, different ways of formalization, different levels of complexity were simultaneously present in a voluminous manuscript that had become completely unmanageable. In particular, a portion of the text had been conceived in the language of category theory and employed ideas of a rather abstract nature, while another part was expounded in the more conventional set-theoretic style, stressing intui tivity and concreteness.
In this volume the author gives a detailed presentation of his theory of multiphase mixtures with structure. The book also addresses students, and in addition encourages further research. Based on the concept of averaging the field equations, conservation and balance equations are developed. A material deformation postulate leads to structured mixtures. The resulting model is compared with those in use elsewhere. The final chapters are devoted to constitutive theory and constitutive equations. In particular, two-phase mixtures are treated in some detail.
Particles with fractional statistics interpolating between bosons and fermions have attracted considerable interest from mathematical physicists. In recent years it has emerged that these so-called anyons have rather unexpected applications, such as the fractional Hall effect, anyonic excitations in films of liquid helium, and high-temrperature superconductivity. Furthermore, they are discussed also in the context of conformal field theories. This book is a systematic and pedagogical introduction that considers the subject of anyons from many different points of view. In particular, the author presents the relation of anyons to braid groups and Chern-Simons field theory and devotes three chapters to physical applications. The book, while being of interest to researchers, primarily addresses advanced students of mathematics and physics.
The study of thermodynamics is often limited to classical thermodynamics where minimal laws and concepts lead to a wealth of equations and applications. The resultant equations best describe systems at equilibrium with no temporal or s- tial parameters. The equations do, however, often provide accurate descriptions for systems close to equilibrium. . Statistical thermodynamics produces the same equilibrium information starting with the microscopic properties of the atoms or molecules in the system that correlates with the results from macroscopic classical thermodynamics. Because both these disciplines develop a wealth of information from a few starting postulates, e. g. , the laws of thermodyamics, they are often introduced as independent disciplines. However, the concepts and techniques dev- oped for these disciplines are extremely useful in many other disciplines. This book is intended to provide an introduction to these disciplines while revealing the connections between them. Chemical kinetics uses the statistics and probabilities developed for statistical thermodynamics to explain the evolution of a system to equilibrium. Irreversible thermodynamics, which is developed from the equations of classical thermodyn- ics, centers on distance-dependent forces, and time-dependent ?uxes. The force ?ux equations of irreversible thermodynamics lead are generated from the intensive and extensive variables of classical thermodynamics. These force ?ux equations lead, in turn, to transport equations such as Fick's ?rst law of diffusion and the Nernst Planck equation for electrochemical transport. The book illustrates the concepts using some simple examples.
This collection of lectures covers a wide range of present day research in thermodynamics and the theory of phase transitions far from equilibrium. The contributions are written in a pedagogical style and present an extensive bibliography to help graduates organize their further studies in this area. The reader will find lectures on principles of pattern formation in physics, chemistry and biology, phase instabilities and phase transitions, spatial and temporal structures in optical systems, transition to chaos, critical phenomena and fluctuations in reaction-diffusion systems, and much more.
More than to any other single individual, thermodynamics owes its creation to Nicolas-Leonard-Sadi ' Carnot. Sadi, the son of the "great Carnot" Lazare, was he- ily in uencedby his father. Not onlywas LazareMinister of War duringNapoleon's consulate, he was a respected mathematician and engineer in his own right. Ma- ematically, Lazare can lay claim to the de nition of the cross ratio, a projective invariant of four points. Lazare was also interested in how machines operated, - phasizing the roles of work and "vis viva," or living force, which was later to be associated with the kinetic energy. He arrived at a dynamical theory that machines in order to operate at maximum ef ciency should avoid "any impact or sudden change. " This was the heritage he left to his son Sadi. The mechanics of Newton, in his Principia, was more than a century old. It dealt with the mechanics of conservative systems in which there was no room for p- cesses involving heat and friction. Such processes would ruin the time reversibility of mechanical laws, which could no longer be derived by minimizing the difference between kinetic and potential energies. When Sadi wrote his only scienti c work in 1824, there were no laws governing the mechanical effects of heat. In fact, caloric theory was still in vogue, which treated heat as an imponderable uid that was c- served.
In this comprehensive text a systematic numerical and analytical treatment of the procedures for reducing complicated systems to a simplified reaction mechanism is presented. The results of applying the reduced reaction mechanism to a one-dimensional laminar flame are discussed. A set of premixed and non-premixed methane-air flames with simplified transport and skeletal chemistry are employed as test problems that are used later on to evaluate the results and assumptions in reduced reaction networks. The first four chapters form a short tutorial on the procedures used in formulating the test problems and in reducing reaction mechanisms by applying steady-state and partial-equilibrium approximations. The final six chapters discuss various aspects of the reduced chemistry problem for premixed and nonpremixed combustion.
There are many examples of cooperation in Nature: cells cooperate to form tissues, organs cooperate to form living organisms, and individuals cooperate to raise their offspring or to hunt. However, why cooperation emerges and survives in hostile environments, when defecting would be a much more profitable short-term strategy, is a question that still remains open. During the past few years, several explanations have been proposed, including kin and group selection, punishment and reputation mechanisms, or network reciprocity. This last one will be the center of the present study. The thesis explores the interface between the underlying structure of a given population and the outcome of the cooperative dynamics taking place on top of it, (namely, the Prisoner's Dilemma Game). The first part of this work analyzes the case of a static system, where the pattern of connections is fixed, so it does not evolve over time. The second part develops two models for growing topologies, where the growth and the dynamics are entangled.
This book reviews the basic ideas of the Law of Large Numbers with its consequences to the deterministic world and the issue of ergodicity. Applications of Large Deviations and their outcomes to Physics are surveyed. The book covers topics encompassing ergodicity and its breaking and the modern applications of Large deviations to equilibrium and non-equilibrium statistical physics, disordered and chaotic systems, and turbulence.
What are the principles that keep our society together? This question is even more difficult to answer than the long-standing question, what are the forces that keep our world together. However, the social challenges of humanity in the 21st century ranging from the financial crises to the impacts of globalization, require us to make fast progress in our understanding of how society works, and how our future can be managed in a resilient and sustainable way. This book can present only a few very first steps towards this ambitious goal. However, based on simple models of social interactions, one can already gain some surprising insights into the social, ``macro-level'' outcomes and dynamics that is implied by individual, ``micro-level'' interactions. Depending on the nature of these interactions, they may imply the spontaneous formation of social conventions or the birth of social cooperation, but also their sudden breakdown. This can end in deadly crowd disasters or tragedies of the commons (such as financial crises or environmental destruction). Furthermore, we demonstrate that classical modeling approaches (such as representative agent models) do not provide a sufficient understanding of the self-organization in social systems resulting from individual interactions. The consideration of randomness, spatial or network interdependencies, and nonlinear feedback effects turns out to be crucial to get fundamental insights into how social patterns and dynamics emerge. Given the explanation of sometimes counter-intuitive phenomena resulting from these features and their combination, our evolutionary modeling approach appears to be powerful and insightful. The chapters of this book range from a discussion of the modeling strategy for socio-economic systems over experimental issues up the right way of doing agent-based modeling. We furthermore discuss applications ranging from pedestrian and crowd dynamics over opinion formation, coordination, and cooperation up to conflict, and also address the response to information, issues of systemic risks in society and economics, and new approaches to manage complexity in socio-economic systems. Selected parts of this book had been previously published in peer reviewed journals.
Why do things go wrong? Why, despite all the planning and care in the world, do things go from bad to worse? This book argues that it is because we are like the ants. Just as ants create an anthill without being aware of it, unintended side effects of human activity create all manner of social trends and crises. The book traces the way these trends emerge and the role they play in some of the major issues of our time. One of the greatest challenges today is the complexity of our social and economic systems. Every action has side effects that people often ignore or fail to see. The book examines the ways in which limitations in our thinking and behaviour lead to unintended side effects. It looks at the role played by complex networks of interactions. Finally, it looks at the way side effects of new technologies, especially computers and communication, have created an Information Revolution, the full repercussions of which are yet to be seen. In our race to create new technologies and sustain indefinite economic growth, we are at best dimly aware of the ways in which we are transforming society and threatening our environment. |
![]() ![]() You may like...
|