Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics
On June 19th 1999, the European Ministers of Education signed the Bologna Dec laration, with which they agreed that the European university education should be uniformized throughout Europe and based on the two cycle bachelor master's sys tem. The Institute for Theoretical Physics at Utrecht University quickly responded to this new challenge and created an international master's programme in Theoret ical Physics which started running in the summer of 2000. At present, the master's programme is a so called prestige master at Utrecht University, and it aims at train ing motivated students to become sophisticated researchers in theoretical physics. The programme is built on the philosophy that modern theoretical physics is guided by universal principles that can be applied to any sub?eld of physics. As a result, the basis of the master's programme consists of the obligatory courses Statistical Field Theory and Quantum Field Theory. These focus in particular on the general concepts of quantum ?eld theory, rather than on the wide variety of possible applica tions. These applications are left to optional courses that build upon the ?rm concep tual basis given in the obligatory courses. The subjects of these optional courses in clude, for instance, Strongly Correlated Electrons, Spintronics, Bose Einstein Con densation, The Standard Model, Cosmology, and String Theory.
This immensely practical guide to PIV provides a condensed, yet exhaustive guide to most of the information needed for experiments employing the technique. This second edition has updated chapters on the principles and extra information on microscopic, high-speed and three component measurements as well as a description of advanced evaluation techniques. What's more, the huge increase in the range of possible applications has been taken into account as the chapter describing these applications of the PIV technique has been expanded.
We present an improved and enlarged version of our book Nonlinear - namics of Chaotic and Stochastic Systems published by Springer in 2002. Basically, the new edition of the book corresponds to its ?rst version. While preparingthiseditionwemadesomeclari?cationsinseveralsectionsandalso corrected the misprints noticed in some formulas. Besides, three new sections have been added to Chapter 2. They are "Statistical Properties of Dynamical Chaos," "E?ects of Synchronization in Extended Self-Sustained Oscillatory Systems," and "Synchronization in Living Systems." The sections indicated re?ect the most interesting results obtained by the authors after publication of the ?rst edition. We hope that the new edition of the book will be of great interest for a widesectionofreaderswhoarealreadyspecialistsorthosewhoarebeginning research in the ?elds of nonlinear oscillation and wave theory, dynamical chaos, synchronization, and stochastic process theory. Saratov, Berlin, and St. Louis V.S. Anishchenko November 2006 A.B. Neiman T.E. Vadiavasova V.V. Astakhov L. Schimansky-Geier Preface to the First Edition Thisbookisdevotedtotheclassicalbackgroundandtocontemporaryresults on nonlinear dynamics of deterministic and stochastic systems. Considerable attentionisgiventothee?ectsofnoiseonvariousregimesofdynamicsystems with noise-induced order. On the one hand, there exists a rich literature of excellent books on n- linear dynamics and chaos; on the other hand, there are many marvelous monographs and textbooks on the statistical physics of far-from-equilibrium andstochasticprocesses.Thisbookisanattempttocombinetheapproachof nonlinear dynamics based on the deterministic evolution equations with the approach of statistical physics based on stochastic or kinetic equations. One of our main aims is to show the important role of noise in the organization and properties of dynamic regimes of nonlinear dissipative systems.
On March 15, 1901, Henri B' enard defended his thesis entitled "Les Tourbillons cellulaires dans une nappe liquide propageant de la chaleur par convection en 1 r' egime permanent" at the University of Paris, Sorbonne. The results contained in this thesis have been at the origin of recent intensive research activities on c- lular structures observed in many physicochemical systems far from equilibrium: instabilities, spatio-temporal patterns, chaos, and turbulence. The French Physical Society organized a scienti?c meeting to commemorate the centenary of B' enard's thesis, at the Ecole Sup' erieure de Physique et Chimie Industrielles de Paris (ESPCI). This meeting, which gathered approximately one hundred scientists and graduate students working in nonlinear science, was honored by the presence of the director of the ESPCI, Professor Pierre-Gilles de Gennes, Nobel laureate in physics (1991), who gave the opening talk. At the conference, lectures were given by internationally recognized scholars who have contributed to the development of B' enard's work: J.E. Wesfreid, P. Manneville,Y.Pomeau,M.Velarde,J.Gollub,M.Provansal,G.Nicolis,B.C- taing,andP.Coullet.Apostersessionandaroundtableonfurtherdevelopments in nonlinear physics were organized. In the present book, we have extended the list of contributors in order to cover all the aspects involved with B' enard's work, with a main focus on th- mal convection, on B' enard-Marangoni instability and on B' enard-von Karman instability. WewouldliketothankDr.HansKoelschfromSpringerforthepublicationof this monography in the Springer Tracts in Modern Physics series. We ackno- edge a critical reading by C.D. Mitescu and a very helpful technical assistance from Olivier Crumeyrolle.
In recent years, as part of the increasing "informationization" of industry and the economy, enterprises have been accumulating vast amounts of detailed data such as high-frequency transaction data in nancial markets and point-of-sale information onindividualitems in theretail sector. Similarly,vast amountsof data arenow ava- able on business networks based on inter rm transactions and shareholdings. In the past, these types of information were studied only by economists and management scholars. More recently, however, researchers from other elds, such as physics, mathematics, and information sciences, have become interested in this kind of data and, based on novel empirical approaches to searching for regularities and "laws" akin to those in the natural sciences, have produced intriguing results. This book is the proceedings of the international conference THICCAPFA7 that was titled "New Approaches to the Analysis of Large-Scale Business and E- nomic Data," held in Tokyo, March 1-5, 2009. The letters THIC denote the Tokyo Tech (Tokyo Institute of Technology)-Hitotsubashi Interdisciplinary Conference. The conference series, titled APFA (Applications of Physics in Financial Analysis), focuses on the analysis of large-scale economic data. It has traditionally brought physicists and economists together to exchange viewpoints and experience (APFA1 in Dublin 1999, APFA2 in Liege ` 2000, APFA3 in London 2001, APFA4 in Warsaw 2003, APFA5 in Torino 2006, and APFA6 in Lisbon 2007). The aim of the conf- ence is to establish fundamental analytical techniques and data collection methods, taking into account the results from a variety of academic disciplines.
The understanding of empirical traf?c congestion occurring on unsignalized mul- lane highways and freeways is a key for effective traf?c management, control, or- nization, and other applications of transportation engineering. However, the traf?c ?ow theories and models that dominate up to now in transportation research journals and teaching programs of most universities cannot explain either traf?c breakdown or most features of the resulting congested patterns. These theories are also the - sis of most dynamic traf?c assignment models and freeway traf?c control methods, which therefore are not consistent with features of real traf?c. For this reason, the author introduced an alternative traf?c ?ow theory called three-phase traf?c theory, which can predict and explain the empirical spatiot- poral features of traf?c breakdown and the resulting traf?c congestion. A previous book "The Physics of Traf?c" (Springer, Berlin, 2004) presented a discussion of the empirical spatiotemporal features of congested traf?c patterns and of three-phase traf?c theory as well as their engineering applications. Rather than a comprehensive analysis of empirical and theoretical results in the ?eld, the present book includes no more empirical and theoretical results than are necessary for the understanding of vehicular traf?c on unsignalized multi-lane roads. The main objectives of the book are to present an "elementary" traf?c ?ow theory and control methods as well as to show links between three-phase traf?c t- ory and earlier traf?c ?ow theories. The need for such a book follows from many commentsofcolleaguesmadeafterpublicationofthebook"ThePhysicsofTraf?c".
This new edition also treats smart materials and artificial life. A new chapter on information and computational dynamics takes up many recent discussions in the community.
Dealing with Uncertainties is an innovative monograph that lays special emphasis on the deductive approach to uncertainties and on the shape of uncertainty distributions. This perspective has the potential for dealing with the uncertainty of a single data point and with sets of data that have different weights. It is shown that the inductive approach that is commonly used to estimate uncertainties is in fact not suitable for these two cases. The approach that is used to understand the nature of uncertainties is novel in that it is completely decoupled from measurements. Uncertainties which are the consequence of modern science provide a measure of confidence both in scientific data and in information in everyday life. Uncorrelated uncertainties and correlated uncertainties are fully covered and the weakness of using statistical weights in regression analysis is discussed. The text is abundantly illustrated with examples and includes more than 150 problems to help the reader master the subject.
ThisvolumeisacollectionofarticlesoriginallypublishedonaSpecialIssueoftheAstrophysicsandSpaceScienceJournal. It is intended to give a comprehensive overview of the current state of knowledge in solar and stellar modelling, with the aim of comparing and extending what we know from the detailed solar modelling, made possible by the helioseismic tools and by the recent analysis of the solar spectrum, to the modelling and understanding of generic stellar structures and their evolution. Particular emphasis is devoted to the role of the input physics, and its relevant uncertainties, in the construction of stellar models and in the resulting predictions for general observable quantities. Issues related to convection, overshoot, diffusion and settling of helium and heavy elements, rotation, chemical composition and magnetic eld are extensively discussed. Large space is dedicated to the application of helio- and asteroseismic techniques as tools to prove the theory of the evolution and the structure of the stars. Comments on prospects for future improvements and re nements of the theoretical models are given, focusing on the possibility of getting ever more precise helioseismic and asteroseismic observations from ground and space. The articles included in this volume are the results of the HELAS-NA5 workshop 'Synergies between solar and stellar modelling' held in Rome from 22nd to 26th of June 2009, which was an unique occasion to gather the solar and the stellar physics communities to discuss the urgent questions risen by recent photometric and spectroscopic observational results.
The aim of this volume of scientific essays is twofold. On the one hand, by remembering the scientific figure of Eduardo R. Caianiello, it aims at focusing on his outstanding contributions - from theoretical physics to cybernetics - which after so many years still represent occasion of innovative paths to be fruitfully followed. It must be stressed the contribution that his interdisciplinary methodology can still be of great help in affording and solving present day complex problems. On the other hand, it aims at pinpointing with the help of the scientists contributing to the volume - some crucial problems in present day research in the fields of interest of Eduardo Caianiello and which are still among the main lines of investigation of some of the Institutes founded by Eduardo (Istituto di Cibernetica del CNR, IIAS, etc).
Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.
Nano-science and nano-technology are rapidly developing scientific and technological areas that deal with physical, chemical and biological processes that occur on nano-meter scale - one millionth of a millimeter. Self-organization and pattern formation play crucial role on nano-scales and promise new, effective routes to control various nano-scales processes. This book contains lecture notes written by the lecturers of the NATO Advanced Study Institute "Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems" that took place in St Etienne de Tinee, France, in the fall 2004. They give examples of self-organization phenomena on micro- and nano-scale as well as examples of the interplay between phenomena on nano- and macro-scales leading to complex behavior in various physical, chemical and biological systems. They discuss such fascinating nano-scale self-organization phenomena as self-assembly of quantum dots in thin solid films, pattern formation in liquid crystals caused by light, self-organization of micro-tubules and molecular motors, as well as basic physical and chemical phenomena that lead to self-assembly of the most important molecule on the basis of which most of living organisms are built - DNA. A review of general features of all pattern forming systems is also given. The authors of these lecture notes are the leading experts in the field of self-organization, pattern formation and nonlinear dynamics in non-equilibrium, complex systems.
Holistic Engineering Education: Beyond Technology is a compilation of coordinated and focused essays from world leaders in the engineering profession who are dedicated to a transformation of engineering education and practice. The contributors define a new and holistic approach to education and practice that captures the creativity, interdisciplinarity, complexity, and adaptability required for the profession to grow and truly serve global needs. With few exceptions today, engineering students and professionals continue to receive a traditional, technically-based education and training using curriculum models developed for early 20th century manufacturing and machining. While this educational paradigm has served engineering well, helping engineers create awe-inspiring machines and technologies for society, the coursework and expectations of most engineering programs eschew breadth and intellectual exploration to focus on consistent technological precision and study. Why this dichotomy? While engineering will always need precise technological skill, the 21st century innovation economy demands a new professional perspective that recognizes the value of complex systems thinking, cross-disciplinary collaborations, economic and environmental impacts (sustainability), and effective communication to global and community leaders, thus enabling engineers to consider "the whole patient" of society's needs. The goal of this book is to inspire, lead, and guide this critically needed transformation of engineering education. "Holistic Engineering Education: Beyond Technology points the way to a transformation of engineering education and practice that will be sufficiently robust, flexible, and systems-oriented to meet the grand challenges of the 21st century with their ever-increasing scale, complexity, and transdisciplinary nature." -- Charles Vest, President, National Academy of Engineering; President Emeritus, MIT "This collection of essays provides compelling arguments for the need of an engineering education that prepares engineers for the problems of the 21st century. Following the National Academy's report on the Engineer of 2020, this book brings together experts who make the case for an engineering profession that looks beyond developing just cool technologies and more into creating solutions that can address important problems to benefit real people." -- Linda Katehi, Chancellor, University of California at Davis "This superb volume offers a provocative portrait of the exciting future of engineering education...A dramatically new form of engineering education is needed that recognizes this field as a liberal art, as a profession that combines equal parts technical rigor and creative design...The authors challenge the next generation to engineering educators to imagine, think and act in new ways. " -- Lee S. Shulman, President Emeritus, The Carnegie Foundation for the Advancement of Teaching and Charles E. Ducommun Professor of Education Emeritus, Stanford University
Non-linear stochastic systems are at the center of many engineering disciplines and progress in theoretical research had led to a better understanding of non-linear phenomena. This book provides information on new fundamental results and their applications which are beginning to appear across the entire spectrum of mechanics. The outstanding points of these proceedings are Coherent compendium of the current state of modelling and analysis of non-linear stochastic systems from engineering, applied mathematics and physics point of view. Subject areas include: Multiscale phenomena, stability and bifurcations, control and estimation, computational methods and modelling. For the Engineering and Physics communities, this book will provide first-hand information on recent mathematical developments. The applied mathematics community will benefit from the modelling and information on various possible applications.
Model integration - the process by which different modelling efforts can be brought together to simulate the target system - is a core technology in the field of Systems Biology. In the work presented here model integration was addressed directly taking cancer systems as an example. An in-depth literature review was carried out to survey the model forms and types currently being utilised. This was used to formalise the main challenges that model integration poses, namely that of paradigm (the formalism on which a model is based), focus (the real-world system the model represents) and scale. A two-tier model integration strategy, including a knowledge-driven approach to address model semantics, was developed to tackle these challenges. In the first step a novel description of models at the level of behaviour, rather than the precise mathematical or computational basis of the model, is developed by distilling a set of abstract classes and properties. These can accurately describe model behaviour and hence describe focus in a way that can be integrated with behavioural descriptions of other models. In the second step this behaviour is decomposed into an agent-based system by translating the models into local interaction rules. The book provides a detailed and highly integrated presentation of the method, encompassing both its novel theoretical and practical aspects, which will enable the reader to practically apply it to their model integration needs in academic research and professional settings. The text is self-supporting. It also includes an in-depth current bibliography to relevant research papers and literature. The review of the current state of the art in tumour modelling provides added value.
Oligopoly theory is one of the most intensively studied areas of mathematical economics. On the basis of the pioneering works of Cournot (1838), many res- rchers have developed and extensively examined the different variants of oligopoly models. Initially, the existence and uniqueness of the equilibrium of the different types of oligopolies was the main concern, and later the dynamic extensions of these models became the focus. The classical result of Theocharis (1960) asserts that under discrete time scales and static expectations, the equilibrium of a sing- product oligopoly without product differentiation and with linear price and cost functions is asymptotically stable if and only if it is a duopoly. In the continuous time case, asymptotic stability is guaranteed for any number of ?rms. In these cases the resulting dynamical systems are also linear, where local and global asymptotic stability are equivalent to each other. The classical book of Okuguchi (1976) gives a comprehensive summary of the earlier results and developments. The multipr- uct extensionshave been discussed in Okuguchiand Szidarovszky(1999);however, nonlinear features were barely touched upon in these contributions. WiththedevelopmentofthecriticalcurvemethodbyGumowskiandMira(1980) (see also Mira et al. (1996))fordiscrete time systemsand the introductionof cont- uously distributed information lags by Invernizzi and Medio (1991) in continuous time systems, increasing attention has been given to the global dynamics of n- linear oligopolies. The authors of this book have devoted a great deal of research effort to this area.
"The importance of knowledge consists not only in its direct practical utility but also in the fact the it promotes a widely contemplative habit of mind; on this ground, utility is to be found in much of the knowledge that is nowadays labelled 'useless'. " Bertrand Russel, In Praise of Idleness, London (1935) "Why are scientists in so many cases so deeply interested in their work ? Is it merely because it is useful ? It is only necessary to talk to such scientists to discover that the utilitarian possibilities of their work are generally of secondary interest to them. Something else is primary. " David Bohm, On creativity, Abingdon (1996) In this volume, the dynamical critical behaviour of many-body systems far from equilibrium is discussed. Therefore, the intrinsic properties of the - namics itself, rather than those of the stationary state, are in the focus of 1 interest. Characteristically, far-from-equilibrium systems often display - namical scaling, even if the stationary state is very far from being critical. A 1 As an example of a non-equilibrium phase transition, with striking practical c- sequences, consider the allotropic change of metallic ?-tin to brittle ?-tin. At o equilibrium, the gray ?-Sn becomes more stable than the silvery ?-Sn at 13. 2 C. Kinetically, the transition between these two solid forms of tin is rather slow at higher temperatures. It starts from small islands of ?-Sn, the growth of which proceeds through an auto-catalytic reaction.
Systems driven far from thermodynamic equilibrium can create dissipative structures through the spontaneous breaking of symmetries. A particularly fascinating feature of these pattern-forming systems is their tendency to produce spatially confined states. These localized wave packets can exist as propagating entities through space and/or time. Various examples of such systems will be dealt with in this book, including localized states in fluids, chemical reactions on surfaces, neural networks, optical systems, granular systems, population models, and Bose-Einstein condensates. This book should appeal to all physicists, mathematicians and electrical engineers interested in localization in far-from-equilibrium systems. The authors - all recognized experts in their fields - strive to achieve a balance between theoretical and experimental considerations thereby giving an overview of fascinating physical principles, their manifestations in diverse systems, and the novel technical applications on the horizon.
This book contains selected papers of NSC08, the 2nd Conference on Nonlinear Science and Complexity, held 28-31 July, 2008, Porto, Portugal. It focuses on fundamental theories and principles, analytical and symbolic approaches, computational techniques in nonlinear physics and mathematics. Topics treated include * Chaotic Dynamics and Transport in Classic and Quantum Systems * Complexity and Nonlinearity in Molecular Dynamics and Nano-Science * Complexity and Fractals in Nonlinear Biological Physics and Social Systems * Lie Group Analysis and Applications in Nonlinear Science * Nonlinear Hydrodynamics and Turbulence * Bifurcation and Stability in Nonlinear Dynamic Systems * Nonlinear Oscillations and Control with Applications * Celestial Physics and Deep Space Exploration * Nonlinear Mechanics and Nonlinear Structural Dynamics * Non-smooth Systems and Hybrid Systems * Fractional dynamical systems
For the present edition four chapters have been added which form the fourth 1 part at the end of the book . Entitled The triumph of neoliberalism , the new partexplains how theimplementation worldwide oftheneoliberal agenda paved the way for the present crisis. As a matter of fact, the evidence provided in chapter 9 suggests that the present crisis already began to build up in the mid-1970s. It is around 1975 that (real) US wages reached a peak-level they would never regain in f- lowing decades. It was also around 1975 that the number of strikes began to fall sharply. The mid-1970s also marked the beginning of a huge in ow of immigrants (in large part of Hispanic origin) into the United States. The in ated supply of labor depressed wages and this had the consequence that consumption could be increased only by an unprecedented development of credit. Perhaps the reader may think that to blame the prevailing economic system for the unfolding depression is a fairly common and all too easy temptation.
This is the second edition of the book "Thermodynamics of Fluids under Flow," which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vazquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vazquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer blends, laminar and turbulent superfluids, phonon hydrodynamics and heat transport in nanosystems, nuclear collisions, far-from-equilibrium ideal gases, and molecular solutions. It also deals with a variety of situations, emphasizing the non-equilibrium flow contribution: temperature and entropy in flowing ideal gases, shear-induced effects on phase transitions in real gases and on polymer solutions, stress-induced migration and its application to flow chromatography, Taylor dispersion, anomalous diffusion in flowing systems, the influence of the flow on chemical reactions, and polymer degradation. The new edition is not only broader in scope, but more educational in character, and with more emphasis on applications, in keeping with our times. It provides many examples of how a deeper theoretical understanding may bring new and more efficient applications, forging links between theoretical progress and practical aims. This updated version expands on the trusted content of its predecessor, making it more interesting and useful for a larger audience.
This book explores non-extensive statistical mechanics in non-equilibrium thermodynamics, and presents an overview of the strong nonlinearity of chaos and complexity in natural systems, drawing on relevant mathematics from topology, measure-theory, inverse and ill-posed problems, set-valued analysis, and nonlinear functional analysis. It offers a self-contained theory of complexity and complex systems as the steady state of non-equilibrium systems, denoting a homeostatic dynamic equilibrium between stabilizing order and destabilizing disorder.
Vortex flow is one of the fundamental types of fluid and gas motion. These flows are the most spectacular in the form of concentrated vortices, characterized by the localization of vorticity (curl of velocity) in bounded regions of a space, beyond which the vorticity is either absent or rapidly falls down to zero. Concentrated vortices are often observed in nature, exemplified by atmospheric cyclones, whirlwinds and tornados, oceanic vortices, whirlpools on a water s- face, and ring vortices caused by explosive outburst of volcanoes. In technical - vices concentrated vortices form when flow separates from sharp edges of flying vehicles and ships. Among these are vortices flowing off the ends of airplane wings, and intentionally generated vortices for intensification of burning in c- bustion chambers, vortices in cyclonic devices used for mixing or separation of impurities in fluids and gases. One such remarkable and frequent type of conc- trated vortices is a vortex ring which constitutes a vortex tube closed into a t- oidal ring moving in a surrounding fluid like an isolated body out of contact with solid boundaries of the flow region if such boundaries exist. Formation and motion of vortex rings are important part of the dynamics of a continuum medium and have been studied for more than a century.
Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices. The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties. The work is rooted in the materials sciences of shape memory alloys and covers thermodynamical, micro-mechanical and crystallographical aspects. It addresses scientists in these research fields and their students.
The spectacular success of the scientific enterprise over the last four hundred years has led to the promise of an all encompassing vision of the natural world. In this elegant picture, everything we observe is based upon just a few fundamental processes and entities. The almost infinite variety and complexity of the world is thus the product of emergence. But the concept of emergence is fraught with controversy and confusion. This book ponders the question of how emergence should be understood within the scientific picture, and whether a complete vision of the world can be attained that includes consciousness. |
You may like...
Mystery Of Time, The: Asymmetry Of Time…
Alexander L Kuzemsky
Hardcover
R3,980
Discovery Miles 39 800
Molecular Physical Chemistry for…
Florin Emilian Danes, Silvia Danes, …
Hardcover
R2,522
Discovery Miles 25 220
Thermochemical Conversion Processes for…
Falah Alobaid, Jochen Stroehle
Hardcover
R1,244
Discovery Miles 12 440
Radiometric Temperature Measurements…
Zhuomin Zhang, Benjamin K. Tsai, …
Hardcover
R6,502
Discovery Miles 65 020
Numerical Solutions of Boundary Value…
Sujaul Chowdhury, Ponkog Kumar Das, …
Hardcover
R1,781
Discovery Miles 17 810
Frontiers In Entropy Across The…
M. Zuhair Nashed, Willi Freeden
Hardcover
R4,984
Discovery Miles 49 840
Passivity of Complex Dynamical Networks…
Jinliang Wang, Huai-Ning Wu, …
Hardcover
R3,944
Discovery Miles 39 440
|