![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics
This monograph describes and discusses the properties of heterogeneous materials, including conductivity, elastic moduli, and dielectrical constant. The book outlines typical experimental methods, and compares the experimental data and the theoretical predictions. This multidisciplinary book will appeal to applied physicists, materials scientists, chemical and mechanical engineers, chemists, and applied mathematicians.
This book contains papers presented at the Engineering Foundation Conference on mineral matter in fuels held on November 2-7, 1997 in Kona, Hawaii. The conference is one of a continuing series that was initiated by the CEGB Mar- wood Engineering Laboratories in 1963. The conference was to be eventually organised by the Engineering Foundation as the need for multi-disciplinary work related to c- trolling ash effects in combustors became apparent. The conference covers both the science and the applications. The papers also present case histories, particularly for current fuel technologies, developments in advanced technologies for power generation and mathematical modelling of these processes. Developments since 1963 have been slow, but steady, due to the complexity of the chemical and physical processes involved. However, the research presented here displays great improvement in our understanding of the mechanisms by which mineral matter will influence fuel use. Steve Benson from EERC presented a review and current status of issues related to ash deposition in coal combustion and gasification. The application of new analytical tools, which have been detailed in the previous conferences, is presented. These include CCSEM, as well as new techniques for char- terising sintering of ash, such as TMA, image analysis, X-ray diffraction crystallography and thermal analysis. The new analytical techniques were extended to encompass widely differing fuels such as biomass. Ole H Larsen from ELSAM Denmark presented a review of these advanced techniques.
Existing standard textbooks on radiative transfer (RT) are usually confined to theoretical models with little reference to experimental methods. This book has been written to illustrate how calorimetric and spectroscopic measurements can be used to check theoretical predictions on extinction properties of infrared radiation in optically thick, absorbing and scattering particulate media. A determination of infrared extinction coefficients is now possible from three completely independent methods. An interpretation of the results of thermal conductivity measurements is made in terms of the diffusion model of RT. One of the most important topics of the book is the experimental separation of heat transfer modes. Since all modes other than scattered radiation are coupled by temperature profiles, conservation of energy also requires an understanding of the non-radiative heat flow components. Unlike other volumes on RT, this book also contains a review of non-radiative heat flow mechanisms. Thus the book does not treat RT as an isolated phenomenon but stresses the key role of RT among the other transport processes. A considerable part of the book is devoted to the calculation of extinction cross sections by application of Mie theory, anisotropic and dependent scattering, optimization of radiation extinction by experimental means, existence or non-existence of thermal conductivity, and other general questions within the field of thermophysics.
This IMA Volume in ~athematics and its Applications PERCOLATION THEORY AND ERGODIC THEORY OF INFINITE PARTICLE SYSTEMS represents the proceedings of a workshop which was an integral part of the 19R4-85 IMA program on STOCHASTIC DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS We are grateful to the Scientific Committee: naniel Stroock (Chairman) Wendell Fleming Theodore Harris Pierre-Louis Lions Steven Orey George Papanicolaoo for planning and implementing an exciting and stimulating year-long program. We especially thank the Workshop Organizing Committee, Harry Kesten (Chairman), Richard Holley, and Thomas Liggett for organizing a workshop which brought together scientists and mathematicians in a variety of areas for a fruitful exchange of ideas. George R. Sell Hans Weinherger PREFACE Percolation theory and interacting particle systems both have seen an explosive growth in the last decade. These suhfields of probability theory are closely related to statistical mechanics and many of the publications on these suhjects (especially on the former) appear in physics journals, wit~ a great variahility in the level of rigour. There is a certain similarity and overlap hetween the methods used in these two areas and, not surprisingly, they tend to attract the same probabilists. It seemed a good idea to organize a workshop on "Percolation Theory and Ergodic Theory of Infinite Particle Systems" in the framework of the special probahility year at the Institute for Mathematics and its Applications in 1985-86. Such a workshop, dealing largely with rigorous results, was indeed held in February 1986.
Cosmology has undergone a revolution in recent years. The exciting
interplay between astronomy and fundamental physics has led to
dramatic revelations, including the existence of the dark matter
and the dark energy that appear to dominate our cosmos. But these
discoveries only reveal themselves through small effects in noisy
experimental data. Dealing with such observations requires the
careful application of probability and statistics.
Originally published in 1991, this book, based on the 1989 Beg-Rohu summer school, contains six sets of pedagogical lectures by internationally respected researchers on the statistical physics of crystal growth. Providing a course in which the phenomena of shape and growth are viewed from a fresh vantage point, the lectures cover a variety of developments in the field and reflect on problems that have received inadequate attention. Statistical physicists, condensed matter physicists, metallurgists, and applied mathematicians will find this a stimulating and valuable book on an important topic.
Differential geometry plays an increasingly important role in modern theoretical physics and applied mathematics. This 2006 textbook gives an introduction to geometrical topics useful in theoretical physics and applied mathematics, covering: manifolds, tensor fields, differential forms, connections, symplectic geometry, actions of Lie groups, bundles, spinors, and so on. Written in an informal style, the author places a strong emphasis on developing the understanding of the general theory through more than 1000 simple exercises, with complete solutions or detailed hints. The book will prepare readers for studying modern treatments of Lagrangian and Hamiltonian mechanics, electromagnetism, gauge fields, relativity and gravitation. Differential Geometry and Lie Groups for Physicists is well suited for courses in physics, mathematics and engineering for advanced undergraduate or graduate students, and can also be used for active self-study. The required mathematical background knowledge does not go beyond the level of standard introductory undergraduate mathematics courses.
The standard cosmological picture of our Universe emerging from a 'big bang' leaves open many fundamental questions which string theory, a unified theory of all forces of nature, should be able to answer. This 2007 text was the first dedicated to string cosmology, and contains a pedagogical introduction to the basic notions of the subject. It describes the possible scenarios suggested by string theory for the primordial evolution of our Universe. It discusses the main phenomenological consequences of these scenarios, stresses their differences from each other, and compares them to the more conventional models of inflation. The book summarises over 15 years of research in this field and introduces advances. It is self-contained, so it can be read by astrophysicists with no knowledge of string theory, and high-energy physicists with little understanding of cosmology. Detailed and explicit derivations of all the results presented provide a deeper appreciation of the subject.
Predicting thermodynamic quantities for chemically realistic systems on the basis of atomistic calculations is still, even today, a nontrivial task. Nonetheless, accurate treatment of inter-particle interactions, in terms of quantum chemical first principles methods, is a prerequisite for many applications, because of the complexity of both reactants and solvents in modern molecular sciences. Currently, a straightforward calculation of thermodynamic properties from these methods is only possible for high-temperature and low- density systems. Although the enthalpy of a system can often be predicted to a good level of precision with this ideal gas approach, calculating the entropy contribution to the free energy is problematic, especially as the density of the system increases. This thesis contains a compact and coherent introduction of basic theoretical features. The foundations are then laid for the development of approaches suitable for calculation of condensed phase entropies on the basis of well-established quantum chemical methods. The main emphasis of this work is on realistic systems in solution, which is the most important environment for chemical synthesis. The presented results demonstrate how isolated molecular concepts typically employed in modern quantum chemistry can be extended for the accurate determination of thermodynamic properties by means of scale- transferring approaches.
Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.
In September 2000, the University of Bayreuth, Germany, hosted the Fourth International Meeting on Thermodi?usion (IMT4). TheIMTconferenceswerebornfromtheideaofbringingtogetherresearchers in the ?eld of thermodi?usion. Under the auspices of the European Group of Research in Thermodi?usion(EGRT)theconferenceseriesstartedin1994with IMT1 in Toulouse and has been continued every other year with IMT2 (Pau, 1996), IMT3 (Mons, 1998), and IMT4 (Bayreuth, 2000). The next conference, IMT5, will be held in 2002 in Lyngby, Denmark. Thermodi?usion, alsocalledthermaldi?usionortheLudwig-Sorete?ect, - scribes the coupling between a temperature gradient and a resulting mass ?ux. Although the e?ect was already discovered in the 19th century by Ludwig and Soret, it has gained growing interest during the last years due to improved - perimentaltechniqueslikestate-of-the-artthermogravitationalcolumns, modern opticalmethods, ?owchannels, andmicrogravityexperiments, tomentiononlya few. We are still far from a detailed microscopic picture, but analytical theories have been improved and the availability of fast computers and e?cient al- rithmsfornonequilibriummoleculardynamicssimulationshasprovidedvaluable input from the theoretical side. TheIMTconferencescoverallaspectsofthermodi?usionfromfundamentals to new applications. Traditionally, the focus has been on the ?uid state, ra- ing from mixtures of simple liquids to more complex systems such as critical mixtures, electrolytes, polymers, colloidal dispersions, or magnetic ?uids. IMT4 tried to widen the scope by including a plenary lecture about thermodi?usion in ionic solids. Scienti?c input comes from diverse disciplines such as physics, chemistry, engineering, and geophysics. Sadly, Leo Kempers passed away while this book was being prepared. Many ofushavelostafriendandrespectedcolleague.Hismanuscripthasbeenbrought into its ?nal state by A. Shapiro, whom we want to thank
Initially a subfield of solid state physics, the study of mesoscopic systems has evolved over the years into a vast field of research in its own right. Keeping track its rapid progress, this book provides a broad survey of the latest developments in the field. The focus is on statistics and dynamics of mesoscopic systems with special emphasis on topics like quantum chaos, localization, noise and fluctuations, mesoscopic optics and quantum transport in nanostructures. Written with nonspecialists in mind, this book will also be useful to graduate students wishing to familiarize themselves with this field of research.
From Kinetic Models to Hydrodynamics serves as an introduction to the asymptotic methods necessary to obtain hydrodynamic equations from a fundamental description using kinetic theory models and the Boltzmann equation. The work is a survey of an active research area, which aims to bridge time and length scales from the particle-like description inherent in Boltzmann equation theory to a fully established "continuum" approach typical of macroscopic laws of physics.The author sheds light on a new method-using invariant manifolds-which addresses a functional equation for the nonequilibrium single-particle distribution function. This method allows one to find exact and thermodynamically consistent expressions for: hydrodynamic modes; transport coefficient expressions for hydrodynamic modes; and transport coefficients of a fluid beyond the traditional hydrodynamic limit. The invariant manifold method paves the way to establish a needed bridge between Boltzmann equation theory and a particle-based theory of hydrodynamics. Finally, the author explores the ambitious and longstanding task of obtaining hydrodynamic constitutive equations from their kinetic counterparts. The work is intended for specialists in kinetic theory-or more generally statistical mechanics-and will provide a bridge between a physical and mathematical approach to solve real-world problems.
The Handbook of Feynman Path Integrals appears just fifty years after Richard Feynman published his pioneering paper in 1948 entitled "Space-Time Approach to Non-Relativistic Quantum Mechanics", in which he introduced his new formulation of quantum mechanics in terms of path integrals. The book presents for the first time a comprehensive table of Feynman path integrals together with an extensive list of references; it will serve the reader as a thorough introduction to the theory of path integrals. As a reference book, it is unique in its scope and will be essential for many physicists, chemists and mathematicians working in different areas of research.
This IMA Volume in Mathematics and its Applications NONLINEAR PHENOMENA IN ATMOSPHERIC AND OCEANIC SCIENCES is based on the proceedings of a workshop which was an integral part of the 1989-90 IMA program on "Dynamical Systems and their Applications". The aim of this workshop was to promote cross-fertilization of ideas between investigators who are using nonlinear dynamical systems and numerical simulations to study the earth's atmosphere and oceans. We thank George F. Carnevale, Shui-Nee Chow, Martin Golubitsky, Richard McGehee, Raymond Pierrehumbert and George R. Sell for organizing the meeting. We especially thank George F. Carnevale and Raymond Pierrehumbert for editing the proceedings. We also take this opportunity to thank those agencies whose financial support made the workshop possible: the Army Research Office, the Minnesota Supercom puter Institute, the National Science Foundation, and the Office of Naval Research. A vner Friedman Willard Miller, Jr. PREFACE When we took on this project, we did not realize we were organizing a workshop on two-dimensional fluid dynamics. The participants who were invited had been working on a broad range of mathematically challenging problems related to atmo spheric and oceanic phenomena, and they were given carte blanche to talk about their current interests. With few exceptions, the favored subject involved one or another aspect of fluid flow in two dimensions.
Although nearly three years have elapsed since the publication of this work in Hungarian, it was decided to publish the English edition in the same form as the original, apart from some minor modifications. Since, recent research has been directed to the development of an exact theory of non-linear irreversible processes; we suggest to readers interested in similar tasks - such as the continuation of this boo- that they should study some new publications: "On the most general form of the Thermodynamic Integral Principle," Z. phys. Chem. 239 (1968) 133, and particularly: "On the Governing Principle of Dissi pative Processes," Ann. Phys. 7 (1969) 23. I have to thank my wife and Mr. W.F.HEINZ for the translation of the very concise Hungarian text. I also wish to express my gratitude to Dr. L.KARADI and Mr. Gy. VINCZE for reading the typescript with such care and to Mrs. A. R6sZLER, who typed the manuscript with great patience. I am deeply indebted to Professor ISTVAN SZABO for making this edition available so quickly and for including my work in the "En gineering Science Library." Finally, I would like to express my thanks to Springer-Verlag for the excellent edition and to the editorial staff for their readiness to meet my wishes."
Small-scale structures in turbulent flows appear as a subtle mixture of order and chaos that could play an important role in the energetics. The aim here is a better understanding of the similarities and differences between vortex and current dynamics, and of the influence of these structures on the statistical and transport properties of hydrodynamic and magnetohydrodynamic turbulence, with special concern for fusion plasmas, and solar or magnetospheric environments. Special emphasis is given to the intermittency at inertial scales and to the coherent structures at small scales. Magnetic reconnection and the dynamo effect are also discussed, together with the effect of stratification and inhomogeneity. The impact of hydrodynamic concepts on astro and geophysical observations are reviewed.
"Fundamental Aspects of Plasma Chemical Physics - Thermodynamics" develops basic and advanced concepts of plasma thermodynamics from both classical and statistical points of view. After a refreshment of classical thermodynamics applied to the dissociation and ionization regimes, the book invites the reader to discover the role of electronic excitation in affecting the properties of plasmas, a topic often overlooked by the thermal plasma community. Particular attention is devoted to the problem of the divergence of the partition function of atomic species and the state-to-state approach for calculating the partition function of diatomic and polyatomic molecules. The limit of ideal gas approximation is also discussed, by introducing Debye-Huckel and virial corrections. Throughout the book, worked examples are given in order to clarify concepts and mathematical approaches. This book is a first of a series of three books to be published by the authors on fundamental aspects of plasma chemical physics. The next books will discuss transport and kinetics. "
This book deals with the theory and the applications of a new time domain, termed natural time domain, that has been forwarded by the authors almost a decade ago (P.A. Varotsos, N.V. Sarlis and E.S. Skordas, Practica of Athens Academy 76, 294-321, 2001; Physical Review E 66, 011902, 2002). In particular, it has been found that novel dynamical features hidden behind time series in complex systems can emerge upon analyzing them in this new time domain, which conforms to the desire to reduce uncertainty and extract signal information as much as possible. The analysis in natural time enables the study of the dynamical evolution of a complex system and identifies when the system enters a critical stage. Hence, natural time plays a key role in predicting impending catastrophic events in general. Relevant examples of data analysis in this new time domain have been published during the last decade in a large variety of fields, e.g., Earth Sciences, Biology and Physics. The book explains in detail a series of such examples including the identification of the sudden cardiac death risk in Cardiology, the recognition of electric signals that precede earthquakes, the determination of the time of an impending major mainshock in Seismology, and the analysis of the avalanches of the penetration of magnetic flux into thin films of type II superconductors in Condensed Matter Physics. In general, this book is concerned with the time-series analysis of signals emitted from complex systems by means of the new time domain and provides advanced students and research workers in diverse fields with a sound grounding in the fundamentals of current research work on detecting (long-range) correlations in complex time series. Furthermore, the modern techniques of Statistical Physics in time series analysis, for example Hurst analysis, the detrended fluctuation analysis, the wavelet transform etc., are presented along with their advantages when natural time domain is employed.
Computer Aided Engineering may be defined as an approach to solving tech nological problems in which most or all of the steps involved are automated through the use of computers, data bases and mathematical models. The success of this ap proach, considering hot forming, is tied very directly to an understanding of material behaviour when subjected to deformation at high temperatures. There is general agreement among engineers that not enough is known about that topic -and this gave the initial impetus for the project described in the present study. The authors secured a research grant from NATO (Special Research Grant #390/83) with a mandate to study the "State-of-the-Art of Controlled Rolling." What follows is the result of that study. There are five chapters in this Monograph. The first one, entitled "State-of-the Art of Controlled Rolling" discusses industrial and laboratory practices and research designed to aid in the development of microalloyed steels of superior quality. Follow ing this is the chapter "Methods of Determining Stress-Strain Curves at Elevated Temperatures." The central concern here is the material's resistance to deformation or in other words, its flow strength, the knowledge of which is absolutely essential for the efficient and economical utilization of the computers controlling the rolling process."
This is a collection of outstanding review papers on integrable systems. It gives the algebraic geometric aspects of the subject, describes integrability techniques e.g. for the modified KdV equation, integrability of Hamiltonian systems, hierarchies of equations, probability distribution of eigenvalues, and modern aspects of quantum groups. It addresses researchers in mathematics and mathematical physics.
Molecularly small confined phases play an important role in many scientific and engineering disciplines. For instance, the confining membrane of a living cell is known to affect the structure and transport of cellular water, which mediates the cell's metabolism and other biochemical processes. Transport of hazardous waste through the soil is strongly influenced by the adsorption of bulk phase molecules on the confining mineral _surfaces. Finally, molecularly thin confined fluid films play a prominent part in lubrication. These examples illustrate the broad range of natural and commercial processes to which the present subject pertains. Much experimental effort has been devoted to molecularly small confined phases, revealing the intriguing nature of such systems. Several sections of this book are therefore devoted to descriptions of experimental techniques. To date even the most refined experiments do not yield direct information about structure and processes on the molecular scale. Computer simulations, on the other hand, do give such information and therefore complement real laboratory experiments. Several sections of this book discuss the link between experiments and the corre sponding simulations."
In this book, a number of the world's leading researchers in quantum, classical and atomic physics cooperate to present an up-to-date account of the recent progress in the field. The first part highlights the latest advances in semiclassical theory, whilst the second one is devoted to applications to atomic systems. The authors present the material in pedagogical form to make it easy reading for non-specialists, too. Among the topics treated, the reader will find a new quasiclassical quantization scheme for Hamiltonian dynamics, an application of the semiclassical formalism to photodissociation of small molecules and to the Lorentz gas and discussions of tunneling corrections. Furthermore, one finds papers on chaotic ionization, on the behaviour of hydrogen atoms in external fields, e.g. magnetic or microwave fields.
- Models of vibro-impact systems are widely used in machine dynamics, vibration engineering, and structural mechanics. - Only monograph on this subject in English language. - Systematically presents the theory of vibro-impact systems by analysis of typical engineering applications. - Experimental data and computer simulations are presented. - Targeted to engineers and researchers in design and investigation of mechanical systems as well as to lecturers and advanced students. |
You may like...
Materials for Advanced Heat Transfer…
S. J. Vijay, Brusly Solomon, …
Paperback
R5,072
Discovery Miles 50 720
Measurements and their Uncertainties - A…
Ifan Hughes, Thomas Hase
Hardcover
R2,694
Discovery Miles 26 940
Power System Frequency Control…
Dillip Kumar Mishra, Lili, …
Paperback
R3,232
Discovery Miles 32 320
Molecular Energetics - Consensed-Phase…
Jose A. Martinho Simoes, Manuel Minas da Piedade
Hardcover
R2,661
Discovery Miles 26 610
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,671
Discovery Miles 46 710
|