![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics
Small-scale structures in turbulent flows appear as a subtle mixture of order and chaos that could play an important role in the energetics. The aim here is a better understanding of the similarities and differences between vortex and current dynamics, and of the influence of these structures on the statistical and transport properties of hydrodynamic and magnetohydrodynamic turbulence, with special concern for fusion plasmas, and solar or magnetospheric environments. Special emphasis is given to the intermittency at inertial scales and to the coherent structures at small scales. Magnetic reconnection and the dynamo effect are also discussed, together with the effect of stratification and inhomogeneity. The impact of hydrodynamic concepts on astro and geophysical observations are reviewed.
"Fundamental Aspects of Plasma Chemical Physics - Thermodynamics" develops basic and advanced concepts of plasma thermodynamics from both classical and statistical points of view. After a refreshment of classical thermodynamics applied to the dissociation and ionization regimes, the book invites the reader to discover the role of electronic excitation in affecting the properties of plasmas, a topic often overlooked by the thermal plasma community. Particular attention is devoted to the problem of the divergence of the partition function of atomic species and the state-to-state approach for calculating the partition function of diatomic and polyatomic molecules. The limit of ideal gas approximation is also discussed, by introducing Debye-Huckel and virial corrections. Throughout the book, worked examples are given in order to clarify concepts and mathematical approaches. This book is a first of a series of three books to be published by the authors on fundamental aspects of plasma chemical physics. The next books will discuss transport and kinetics. "
This book deals with the theory and the applications of a new time domain, termed natural time domain, that has been forwarded by the authors almost a decade ago (P.A. Varotsos, N.V. Sarlis and E.S. Skordas, Practica of Athens Academy 76, 294-321, 2001; Physical Review E 66, 011902, 2002). In particular, it has been found that novel dynamical features hidden behind time series in complex systems can emerge upon analyzing them in this new time domain, which conforms to the desire to reduce uncertainty and extract signal information as much as possible. The analysis in natural time enables the study of the dynamical evolution of a complex system and identifies when the system enters a critical stage. Hence, natural time plays a key role in predicting impending catastrophic events in general. Relevant examples of data analysis in this new time domain have been published during the last decade in a large variety of fields, e.g., Earth Sciences, Biology and Physics. The book explains in detail a series of such examples including the identification of the sudden cardiac death risk in Cardiology, the recognition of electric signals that precede earthquakes, the determination of the time of an impending major mainshock in Seismology, and the analysis of the avalanches of the penetration of magnetic flux into thin films of type II superconductors in Condensed Matter Physics. In general, this book is concerned with the time-series analysis of signals emitted from complex systems by means of the new time domain and provides advanced students and research workers in diverse fields with a sound grounding in the fundamentals of current research work on detecting (long-range) correlations in complex time series. Furthermore, the modern techniques of Statistical Physics in time series analysis, for example Hurst analysis, the detrended fluctuation analysis, the wavelet transform etc., are presented along with their advantages when natural time domain is employed.
Computer Aided Engineering may be defined as an approach to solving tech nological problems in which most or all of the steps involved are automated through the use of computers, data bases and mathematical models. The success of this ap proach, considering hot forming, is tied very directly to an understanding of material behaviour when subjected to deformation at high temperatures. There is general agreement among engineers that not enough is known about that topic -and this gave the initial impetus for the project described in the present study. The authors secured a research grant from NATO (Special Research Grant #390/83) with a mandate to study the "State-of-the-Art of Controlled Rolling." What follows is the result of that study. There are five chapters in this Monograph. The first one, entitled "State-of-the Art of Controlled Rolling" discusses industrial and laboratory practices and research designed to aid in the development of microalloyed steels of superior quality. Follow ing this is the chapter "Methods of Determining Stress-Strain Curves at Elevated Temperatures." The central concern here is the material's resistance to deformation or in other words, its flow strength, the knowledge of which is absolutely essential for the efficient and economical utilization of the computers controlling the rolling process."
This is a collection of outstanding review papers on integrable systems. It gives the algebraic geometric aspects of the subject, describes integrability techniques e.g. for the modified KdV equation, integrability of Hamiltonian systems, hierarchies of equations, probability distribution of eigenvalues, and modern aspects of quantum groups. It addresses researchers in mathematics and mathematical physics.
Molecularly small confined phases play an important role in many scientific and engineering disciplines. For instance, the confining membrane of a living cell is known to affect the structure and transport of cellular water, which mediates the cell's metabolism and other biochemical processes. Transport of hazardous waste through the soil is strongly influenced by the adsorption of bulk phase molecules on the confining mineral _surfaces. Finally, molecularly thin confined fluid films play a prominent part in lubrication. These examples illustrate the broad range of natural and commercial processes to which the present subject pertains. Much experimental effort has been devoted to molecularly small confined phases, revealing the intriguing nature of such systems. Several sections of this book are therefore devoted to descriptions of experimental techniques. To date even the most refined experiments do not yield direct information about structure and processes on the molecular scale. Computer simulations, on the other hand, do give such information and therefore complement real laboratory experiments. Several sections of this book discuss the link between experiments and the corre sponding simulations."
In this book, a number of the world's leading researchers in quantum, classical and atomic physics cooperate to present an up-to-date account of the recent progress in the field. The first part highlights the latest advances in semiclassical theory, whilst the second one is devoted to applications to atomic systems. The authors present the material in pedagogical form to make it easy reading for non-specialists, too. Among the topics treated, the reader will find a new quasiclassical quantization scheme for Hamiltonian dynamics, an application of the semiclassical formalism to photodissociation of small molecules and to the Lorentz gas and discussions of tunneling corrections. Furthermore, one finds papers on chaotic ionization, on the behaviour of hydrogen atoms in external fields, e.g. magnetic or microwave fields.
- Models of vibro-impact systems are widely used in machine dynamics, vibration engineering, and structural mechanics. - Only monograph on this subject in English language. - Systematically presents the theory of vibro-impact systems by analysis of typical engineering applications. - Experimental data and computer simulations are presented. - Targeted to engineers and researchers in design and investigation of mechanical systems as well as to lecturers and advanced students.
In this book the concept of indistinguishability is defined for identical particles by the symmetry of the state. It applies, therefore, to both the classical and the quantum framework. The author describes symmetric statistical operators and classifies these by means of extreme points. For the description of infinitely extendible interchangeable random variables de Finetti's theorem is derived and generalizations covering the Poisson limit and the central limit are presented. A characterization and interpretation of the integral representations of classical photon states in quantum optics are derived in abelian subalgebras. Unextendible indistinguishable particles are analyzed in the context of nonclassical photon states. The book addresses mathematical physicists and philosophers of science.
Rotor dynamics is an important branch of dynamics that deals with behavior of rotating machines ranging from very large systems like power plant rotors, for example, a turbogenerator, to very small systems like a tiny dentist's drill, with a variety of rotors such as pumps, compressors, steam/gas turbines, motors, turbopumps etc. as used for example in process industry, falling in between. The speeds of these rotors vary in a large range, from a few hundred RPM to more than a hundred thousand RPM. Complex systems of rotating shafts depending upon their specific requirements, are supported on different types of bearings. There are rolling element bearings, various kinds of fluid film bearings, foil and gas bearings, magnetic bearings, to name but a few. The present day rotors are much lighter, handle a large amount of energy and fluid mass, operate at much higher speeds, and therefore are most susceptible to vibration and instability problems. This have given rise to several interesting physical phenomena, some of which are fairly well understood today, while some are still the subject of continued investigation. Research in rotor dynamics started more than one hundred years ago. The progress of the research in the early years was slow. However, with the availability of larger computing power and versatile measurement technologies, research in all aspects of rotor dynamics has accelerated over the past decades. The demand from industry for light weight, high performance and reliable rotor-bearing systems is the driving force for research, and new developments in the field of rotor dynamics. The symposium proceedings contain papers on various important aspects of rotor dynamics such as, modeling, analytical, computational and experimental methods, developments in bearings, dampers, seals including magnetic bearings, rub, impact and foundation effects, turbomachine blades, active and passive vibration control strategies including control of instabilities, nonlinear and parametric effects, fault diagnostics and condition monitoring, and cracked rotors. This volume is of immense value to teachers, researchers in educational institutes, scientists, researchers in R&D laboratories and practising engineers in industry. "
Once again, it gives me a great pleasure to pen the Foreword to the Proceedings of the 15th International Conference on Thermal Conductivity. As in the past, these now biannual conferences pro vide a broadly based forum for those researchers actively working on this important property of matter to convene on a regular basis to exchange their experiences and report their findings. As it is apparent from the Table of Contents, the 15th Conference represents perhaps the broadest coverage of subject areas to date. This is indicative of the times as the boundaries between disciplines be come increasingly diffused. I am sure the time has come when Con ference Chairmen in coming years will be soliciting contributions not only in the physical sciences and engineering', but will actively seek contributions from the earth sciences and life sciences as well. Indeed, the thermal conductivity and related properties of geological and biological materials are becoming of increasing im portance to our way of life. As it can be seen from the summary table, unfortunately, proceedings have been published only for six of the fifteen con ferences. It is hoped that hereafter this Series will become increasingly well known and be recognized as a major vehicle for the reporting of research on thermal conductivity."
This book is concerned with Artificial Intelligence (AI) concepts and techniques as applied to industrial decision making, control and automation problems. The field of AI has been expanded enormously during the last years due to that solid theoretical and application results have accumulated. During the first stage of AI development most workers in the field were content with illustrations showing ideas at work on simple problems. Later, as the field matured, emphasis was turned to demonstrations that showed the capability of AI techniques to handle problems of practical value. Now, we arrived at the stage where researchers and practitioners are actually building AI systems that face real-world and industrial problems. This volume provides a set of twenty four well-selected contributions that deal with the application of AI to such real-life and industrial problems. These contributions are grouped and presented in five parts as follows: Part 1: General Issues Part 2: Intelligent Systems Part 3: Neural Networks in Modelling, Control and Scheduling Part 4: System Diagnostics Part 5: Industrial Robotic, Manufacturing and Organizational Systems Part 1 involves four chapters providing background material and dealing with general issues such as the conceptual integration of qualitative and quantitative models, the treatment of timing problems at system integration, and the investigation of correct reasoning in interactive man-robot systems.
When confronted with the how's and why's of nature's computational engines, some prefer to focus upon neural function: addressing issues of neural system behavior and its relation to natural intelligence. Then there are those who prefer the study of the 'mechanics' of neural systems: the nuts and bolts of the 'wetware': the neurons and synapses. Those who investigate pulse coded implementations of artificial neural networks know what it means to stand at the boundary which lies between these two worlds: not just asking why natural neural systems behave as they do, but also how they achieve their marvelous feats. The state-of-the-art research results presented in Silicon Implementation of Pulse Coded Neural Networks not only address more conventional abstract notions of neural-like processing, but also the more specific details of neural-like processors. It has been established for some time that natural neural systems perform a great deal of information processing via electrochemical pulses. Accordingly, pulse coded neural network concepts are receiving increased attention in artificial neural network research.This increased interest is compounded by continuing advances in the field of VLSI circuit design. For the first time in history, it is practical to construct networks of neuron-like circuits of reasonable complexity that can be applied to real problems. The pioneering work in artificial neural systems presented in Silicon Implementation of Pulse Coded Neural Networks will lead to further advances that will not only be useful in some practical sense, but may also provide some additional insight into the operation of their natural counterparts. Silicon Implementation of Pulse Coded Neural Networks seeks to cover many of the relevant contemporary studies coming out of this newly emerging area. As such, it serves as an excellent reference, and may be used as a text for advanced courses on the subject.
Developing a new treatment of 'Free Convection Film Flows and Heat Transfer' began in Shang's first monograph and is continued in this monograph. The current book displays the recent developments of laminar forced convection and forced film condensation. It is aimed at revealing the true features of heat and mass transfer with forced convection film flows to model the deposition of thin layers. The novel mathematical similarity theory model is developed to simulate temperature- and concentration- dependent physical processes. The following topics are covered in this book: 1. Mathematical methods - advanced similarity analysis method to replace the traditional Falkner-Skan type transformation - a novel system of similarity analysis and transformation models to overcome the difficult issues of forced convection and forced film flows - heat and mass transfer equations based on the advanced similarity analysis models and equations formulated with rigorous key numerical solutions 2. Modeling the influence of physical factors - effect of thermal dissipation on forced convection heat transfer - a system of models of temperature and concentration-dependent variable physical properties based on the advanced temperature-parameter model and rigorous analysis model on vapor-gas mixture physical properties for the rigorous and convenient description of the governing differential equations - an available approach to satisfy interfacial matching conditions for rigorous and reliable solutions - a system of numerical results on velocity, temperature and concentration fields, as well as, key solutions on heat and mass transfer - the effect of non-condensable gas on heat and mass transfer for forced film condensation. This way it is realized to conveniently and reliably predict heat and mass transfer for convection and film flows and to resolve a series of current difficult issues of heat and mass transfer with forced convection film flows. Professionals in this fields as well as graduate students will find this a valuable book for their work.
Structural Phase Transitions II, like its predecessor (Topics in Current Physics, Vol. 23), presents selected methods and recent advances in the experimental investigation of phase transitions in solids. The two chapters in this volume deal with electron paramagnetic resonance (EPR), and with nuclear magnetic and nuclear quadrupole resonance (NMR-NQR). Both techniques are particularly sensitive to local properties. The chapter on EPR concentrates largely on the investigation of static properties, including mean-field behaviour, critical and multicritical phenomena, whilst NMR is shown to be a powerful tool for studying nonlinear dynamics, incommensurate transitions, and disordered systems. This book will serve as an excellent introduction to the methodology and applications of EPR and NMR-NQR for all those wishing to become acquainted with these important tools for studying structural phase transitions.
Stochastic Dynamics, born almost 100 years ago with the early explanations of Brownian motion by physicists, is nowadays a quickly expanding field of research within nonequilibrium statistical physics. The present volume provides a survey on the influence of fluctuations in nonlinear dynamics. It addresses specialists, although the intention of this book is to provide teachers and students with a reliable resource for seminar work. In particular, the reader will find many examples illustrating the theory as well as a host of recent findings.
This book originated from a course given at the Univcrsidad Aut6noma of Madrid in the Spring of 1994 and in the Universidad Complutense of Madrid in 1995. The goal of these courses is to give the non-specialist an introduction to some old and new ideas in the field of strongly correlated systems, in particular the problems posed by the high-1 superconducting materials. As theoretical physicists, our starting viewpoint to address the problem of strongly correlat ed ferlnion systems and related issues of modern condensed matter physics .is the renormalization group approach applied both to quantU111 field theory and statistical physics. In recent years this has become not only a powerful tool for retrieving the essential physics of interacting systems but also a link between theoretical physics and modern condensed matter physics. Furthermore, once we have this common background for dealing with apparently different prob lems, we discuss more specific topics and even phenomenological aspects of the field. In doing so we have tried to make the exposition clear and simple, with out entering into technical details but focusing ill the fundamental physics of the phenomena under study. Therefore, ve expect that our experience ll1ay have some value to other people entering this fascinating field. We have divided these notes into three parts and each part into chapters, which correspond roughly to one or two lectures. Part I, Chaps. 1-2 (A. H. V."
This compilation contains new theoretical work as well as up-to-date applications contributed by some of the world leaders of current SOM research. It is a compact and vivid collection of almost all aspects of current research on Self-Organizing Maps, ranging from theoretical work, several technical and non-technical applications, numerical and implementation details on sequential and parallel hardware to self-organisation with spiking neurons. An overture, given by Teuvo Kohonen, builds a bridge from the development of the fundamentals to the many extensions, modifications and applications which have made this neural network architecture so successful.
The accomplishments and the available expertise of scientists working on spin systems, lattice gauge models, and quantum liquids and solids has culminated in an extraordinary opportunity for rapid and efficient development of realistic strategies and algorithms of ab initio theoretical analysis of conventional and exotic condensed-matter systems. This volume presents the latest results in the interdisciplinary field of lattice many-body systems. These include magnetism and phase transitions and lattice gauge problems in quantum field theory. Also treated are strongly correlated systems that help to unify many-body problems in solid-state physics, crystallography, and materials sciences and that helped their quantitative understanding.
This book introduces the novel concept of a fuzzy network whose nodes are rule bases and the connections between the nodes are the interactions between the rule bases in the form of outputs fed as inputs. The concept is presented as a systematic study for improving the feasibility and transparency of fuzzy models by means of modular rule bases whereby the model accuracy and efficiency can be optimised in a flexible way. The study uses an effective approach for fuzzy rule based modelling of complex systems that are characterised by attributes such as nonlinearity, uncertainty, dimensionality and structure.The approach is illustrated by formal models for fuzzy networks, basic and advanced operations on network nodes, properties of operations, feedforward and feedback fuzzy networks as well as evaluation of fuzzy networks. The results are demonstrated by numerous examples, two case studies and software programmes within the Matlab environment that implement some of the theoretical methods from the book. The book shows the novel concept of a fuzzy network with networked rule bases as a bridge between the existing concepts of a standard fuzzy system with a single rule base and a hierarchical fuzzy system with multiple rule bases.
Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics, pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.
This monograph attempts to provide a systematic and consistent survey of the fundamentals of the theory of free, linear, isentropic oscillations in spherically symmetric, gaseous equilibrium stars, whose structure is affected neither by axial rotation, nor by the tidal action of a companion, nor by a magnetic eld. Three parts can be distinguished. The rst part, consisting of Chaps.1-8, covers the basic concepts and equations, the distinction between spheroidal and toroidal normal modes, the solution of Poisson's differential equation for the perturbation of the gravitational potential, and Hamilton's variational principle. The second part, consisting of Chaps.9-13, is devotedto the possible existenceof waves propagating in the radial direction, the origin and classi cation of normal modes, the comple- ness of the normal modes, and the relation between the local stability with respect to convection and the global stability of a star. In the third part, Chaps.14-18 c- tain asymptoticrepresentationsof normalmodes. Chapter 19 deals with slow period changes in rapidly evolving pulsating stars. The theory is developed within the framework of the Newtonian theory of gr- itation and the hydrodynamics of compressible uids. It is described in its present status, with inclusion of open questions. We give preference to the use of the adjective "isentropic" above that of the adjective "adiabatic," since, from a thermodynamic point of view, these stellar - cillations are described as reversible adiabatic processes and thus as processes that take place at constant entropy.
This book is intended for scientists, researchers, and graduate students interested in solutions in general, and solutions of metals in particular. Readers are assumed to have a good background in thermodynamics, presented in such books as those cited at the end of Chapter 1, "Thermo dynamic Background." The contents of the book are limited to the solutions of metals + metals, and metals + metalloids, but the results are also appli cable to numerous other types of solutions encountered by metallurgists, materials scientists, geologists, ceramists, and chemists. Attempts have been made to cover each topic in depth with numerical examples whenever necessary. Chapter 2 presents phase equilibria and phase diagrams as related to the thermodynamics of solutions. The emphasis is on the binary diagrams since the ternary diagrams can be understood in terms of the binary diagrams coupled with the phase rule, and the Gibbs energies of mixing. The cal culation of thermodynamic properties from the phase diagrams is not emphasized because such a procedure generally yields mediocre results. Nevertheless, the reader can readily obtain thermodynamic data from phase diagrams by reversing the detailed process of calculation of phase diagrams from thermodynamic data. Empirical rules on phase stability are given in this chapter for a brief and clear understanding of the physical and atomistic factors underlying the alloy phase formation."
Composed of papers written by leading engineers and scientists in the field, this valuable collection reports the most recent advances in cryocooler development, contains extensive performance test results and comparisons, and relates the latest experience in integrating cryocoolers into advanced applications. |
You may like...
Heliophysical Processes
Natchimuthuk Gopalswamy, S. S. Hasan, …
Hardcover
R5,171
Discovery Miles 51 710
How to Get Out of Credit Card Debt - 12…
Howexpert, Norbert Jones
Hardcover
R720
Discovery Miles 7 200
Welfare of Pigs - From Birth to…
Luigi Faucitano, Allan L. Schaefer
Hardcover
R5,512
Discovery Miles 55 120
Theatrical Speech Acts: Performing…
Erika Fischer-Lichte, Torsten Jost, …
Paperback
R1,272
Discovery Miles 12 720
|