![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics
The contributions to this volume review the mathematical description of complex phenomena from both a deterministic and stochastic point of view. The interface between theoretical models and the understanding of complexity in engineering, physics and chemistry is explored. The reader will find information on neural networks, chemical dissipation, fractal diffusion, problems in accelerator and fusion physics, pattern formation and self-organisation, control problems in regions of insta- bility, and mathematical modeling in biology.
Until now the important concept of quantum chaos has remained somewhat ill defined. This volume tackles the ubiquitous borderline between classical andquantum mechanics, studying in particular the semiclassical limit of chaotic systems. The effects of disorder from dynamics and their relation to stochastic systems, quantum coherence effects in mesoscopic systems, and the relevant theoretical approaches are fruitfully combined in this volume. The major paradigms of what is called quantum chaos, random matrix theory and applications to condensed matter and nuclear physics are presented. Detailed discussions of experimental work with particular emphasis on atomic physics are included. The book is highly recommended for graduate-student seminars.
The concept of phase space plays a decisive role in the study of the transition from classical to quantum physics. This is particularly the case in areas such as nonlinear dynamics and chaos, geometric quantization and the study of the various semi-classical theories, which are the setting of the present volume. Much of the content is devoted to the study of the Wigner distribution. This volume gives the first complete survey of the progress made by both mathematicians and physicists. It will serve as an excellent reference for further research.
The pedagogically presented lectures deal with viscoelastic behaviour of fluids, the compatibility of rheological theories with nonequilibrium thermodynamics, fluids under shear, and polymer behaviour in solution and in biological systems. The main aims of the book are to stress the importance of the study of rheological systems for statistical physics and nonequilibrium thermodynamics and to present recent results in rheological modelling. The book will be a valuable source for both students and researchers.
Nature provides many examples of coherent nonlinear structures and waves, and these have been observed and studied in various fields ranging from fluids and plasmas through solid-state physics to chemistry and biology. These proceedings reflect the remarkable process in understanding and modeling nonlinear phenomena in various systems that has recently been made.Experimental, numerical, and theoretical activities interact in various studies that are presented according to the following classification: magnetic and optical systems, biosystems and molecular systems, lattice excitations and localized modes, two-dimensional structures, theoretical physics, and mathematical methods. The book addresses researchers and graduate students from biology, engineering, mathematics, and physics.
Although the study of dynamical systems is mainly concerned with single trans formations and one-parameter flows (i. e. with actions of Z, N, JR, or JR+), er godic theory inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multi-dimensional sym metry groups. However, the wealth of concrete and natural examples, which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. A remarkable exception is provided by a class of geometric actions of (discrete subgroups of) semi-simple Lie groups, which have led to the discovery of one of the most striking new phenomena in multi-dimensional ergodic theory: under suitable circumstances orbit equivalence of such actions implies not only measurable conjugacy, but the conjugating map itself has to be extremely well behaved. Some of these rigidity properties are inherited by certain abelian subgroups of these groups, but the very special nature of the actions involved does not allow any general conjectures about actions of multi-dimensional abelian groups. Beyond commuting group rotations, commuting toral automorphisms and certain other algebraic examples (cf. [39]) it is quite difficult to find non-trivial smooth Zd-actions on finite-dimensional manifolds. In addition to scarcity, these examples give rise to actions with zero entropy, since smooth Zd-actions with positive entropy cannot exist on finite-dimensional, connected manifolds. Cellular automata (i. e.
This volume contains a series of six lecture courses presented by some of the leading exponents in the field of low-temperature physics. Special emphasis is given to theoretical and experimental advances in our understanding of 3He, heavy fermion systems and high-Tc superconductivity. The book provide an ideal basis for graduate courses in low-temperature physics.
Despite scientific evidence that business-as-usual is unsustainable, there is a huge and widespread inertia to 'greening' the planet. Warming to Ecocide considers climate change from a thermodynamic perspective and asks whether market-driven organisations have carried us to the point of no return through the flawed economics of endless growth. Warming to Ecocide begins by exploring the thermodynamic origins of climate change. It demonstrates that equilibrium thermodynamics can provide full explanations for the basic processes of life such as photosynthesis and metabolism, and that non-equilibrium thermodynamics is close to providing an explanation for how life started. Armed with a solid appreciation of the power of thermodynamics, the second half of Warming to Ecocide discusses whether multinational corporations have convinced the public that climate change is insignificant and thereby neutered any all attempts by governments to espouse environmentally-friendly policies. It then goes on to offer strategies whereby mankind may avoid propelling the global average temperature above the pre-industrial level by more than 2 DegreesC, which scientists view as a threshold presaging catastrophic run-away processes.
Combined for researchers and graduate students the articles from the Sitges Summer School together form an excellent survey of the applications of neural-network theory to statistical mechanics and computer-science biophysics. Various mathematical models are presented together with their interpretation, especially those to do with collective behaviour, learning and storage capacity, and dynamical stability.
This book is devoted to the applications of the mathematical theory of solitons to physics, statistical mechanics, and molecular biology. It contains contributions on the signature and spectrum of solitons, nonlinear excitations in prebiological systems, experimental and theoretical studies on chains of hydrogen-bonded molecules, nonlinear phenomena in solid-state physics, including charge density waves, nonlinear wave propagation, defects, gap solitons, and Josephson junctions. The content is interdisciplinary in nature and displays the new trends in nonlinear physics.
to increase the use of direct contact processes, the National Science Foundation sup ported a workshop on direct contact heat transfer at the Solar Energy Research Insti tute in the summer of 1985. We served as organizers for this workshop, which em phasized an area of thermal engineering that, in our opinion, has great promise for the future, but has not yet reached the point of wide-spread commercial application. Hence, a summary of the state of knowledge at this point is timely. The workshop had a dual objective: 1. To summarize the current state of knowledge in such a form that industrial practi tioners can make use of the available information. 2. To indicate the research and development needed to advance the state-of-the-art, indicating not only what kind of research is needed, but also the industrial poten tial that could be realized if the information to be obtained through the proposed research activities were available.
Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author's previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for difference equations with discrete and continuous time. The text begins with both a description and a delineation of the peculiarities of deterministic and stochastic functional differential equations. There follows basic definitions for stability theory of stochastic hereditary systems, and the formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of different mathematical models such as: * inverted controlled pendulum; * Nicholson's blowflies equation; * predator-prey relationships; * epidemic development; and * mathematical models that describe human behaviours related to addictions and obesity. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations is primarily addressed to experts in stability theory but will also be of interest to professionals and students in pure and computational mathematics, physics, engineering, medicine, and biology.
This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi-layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE-like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.
Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices. The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties. The work is rooted in the materials sciences of shape memory alloys and covers thermodynamical, micro-mechanical and crystallographical aspects. It addresses scientists in these research fields and their students.
Entransy in Phase-Change Systems summarizes recent developments in the area of entransy, especially on phase-change processes. This book covers new developments in the area including the great potential for energy saving for process industries, decreasing carbon dioxide emissions, reducing energy bills and improving overall efficiency of systems. This concise volume is an ideal book for engineers and scientists in energy-related industries.
Large-scale winds and currents tend to balance Coriolis and pressure gradient forces. The time evolution of these winds and currents is the subject of the quasi-geostrophic theory. Chapter 1 presents concepts and equations of classical inertial fluid mechanics. Chapter 2 deals with the equations of thermodynamics that close the governing equations of the fluids. Then, the motion is reformulated in a uniformly rotating reference frame. Chapter 3 deals with the shallow-water model and the homogeneous model of wind-driven circulation. The chapter also describes a classical application of the Ekman layer to the atmosphere. Chapter 4 considers the two-layer model, as an introduction to baroclinic flows, together with the concept of available potential energy. Chapter 5 takes into account continuously stratified flows in the ocean and in the atmosphere.
The domain of non-extensive thermostatistics has been subject to intensive research over the past twenty years and has matured significantly. Generalised Thermostatistics cuts through the traditionalism of many statistical physics texts by offering a fresh perspective and seeking to remove elements of doubt and confusion surrounding the area. The book is divided into two parts - the first covering topics from conventional statistical physics, whilst adopting the perspective that statistical physics is statistics applied to physics. The second developing the formalism of non-extensive thermostatistics, of which the central role is played by the notion of a deformed exponential family of probability distributions. Presented in a clear, consistent, and deductive manner, the book focuses on theory, part of which is developed by the author himself, but also provides a number of references towards application-based texts. Written by a leading contributor in the field, this book will provide a useful tool for learning about recent developments in generalized versions of statistical mechanics and thermodynamics, especially with respect to self-study. Written for researchers in theoretical physics, mathematics and statistical mechanics, as well as graduates of physics, mathematics or engineering. A prerequisite knowledge of elementary notions of statistical physics and a substantial mathematical background are required.
The study of thermodynamics is often limited to classical thermodynamics where minimal laws and concepts lead to a wealth of equations and applications. The resultant equations best describe systems at equilibrium with no temporal or s- tial parameters. The equations do, however, often provide accurate descriptions for systems close to equilibrium. . Statistical thermodynamics produces the same equilibrium information starting with the microscopic properties of the atoms or molecules in the system that correlates with the results from macroscopic classical thermodynamics. Because both these disciplines develop a wealth of information from a few starting postulates, e. g. , the laws of thermodyamics, they are often introduced as independent disciplines. However, the concepts and techniques dev- oped for these disciplines are extremely useful in many other disciplines. This book is intended to provide an introduction to these disciplines while revealing the connections between them. Chemical kinetics uses the statistics and probabilities developed for statistical thermodynamics to explain the evolution of a system to equilibrium. Irreversible thermodynamics, which is developed from the equations of classical thermodyn- ics, centers on distance-dependent forces, and time-dependent ?uxes. The force ?ux equations of irreversible thermodynamics lead are generated from the intensive and extensive variables of classical thermodynamics. These force ?ux equations lead, in turn, to transport equations such as Fick's ?rst law of diffusion and the Nernst Planck equation for electrochemical transport. The book illustrates the concepts using some simple examples.
As an introductory account of the theory of phase transitions and critical phenomena, this book reflects lectures given by the authors to graduate students at their departments and is thus classroom-tested to help beginners enter the field. Most parts are written as self-contained units and every new concept or calculation is explained in detail without assuming prior knowledge of the subject. The book significantly enhances and revises a Japanese version which is a bestseller in the Japenese market and is considered a standard textbook in the field. It contains new pedagogical presentations of field theory methods, including a chapter on conformal field theory, and various modern developments hard to find in a single textbook on phase transitions. Exercises are presented as the topics develop, with solutions found at the end of the book, making the usefil for self-teaching, as well as for classroom learning.
Hydrogen in Intermetallics I is the first of two volumes aiming to provide atutorial introduction to the general topic of hydrogen in intermetallic compounds and alloys. In the present volume, a series of chapters, each written by two experts in the field, gives a comprehensive review of thefollowing areas: -preparation of intermetallics and their hydrides on a laboratory and industrial scale; - thermodynamic properties; -crystal and magnetic structure; - electronic properties; - heat of formation models; - magnetism and superconductivity.
In this comprehensive text a systematic numerical and analytical treatment of the procedures for reducing complicated systems to a simplified reaction mechanism is presented. The results of applying the reduced reaction mechanism to a one-dimensional laminar flame are discussed. A set of premixed and non-premixed methane-air flames with simplified transport and skeletal chemistry are employed as test problems that are used later on to evaluate the results and assumptions in reduced reaction networks. The first four chapters form a short tutorial on the procedures used in formulating the test problems and in reducing reaction mechanisms by applying steady-state and partial-equilibrium approximations. The final six chapters discuss various aspects of the reduced chemistry problem for premixed and nonpremixed combustion.
In this volume the author gives a detailed presentation of his theory of multiphase mixtures with structure. The book also addresses students, and in addition encourages further research. Based on the concept of averaging the field equations, conservation and balance equations are developed. A material deformation postulate leads to structured mixtures. The resulting model is compared with those in use elsewhere. The final chapters are devoted to constitutive theory and constitutive equations. In particular, two-phase mixtures are treated in some detail.
This thesis presents a novel coarse-grained model of DNA, in which bases are represented as rigid nucleotides. The model is shown to quantitatively reproduce many phenomena, including elastic properties of the double-stranded state, hairpin formation in single strands and hybridization of pairs of strands to form duplexes, the first time such a wide range of properties has been captured by a coarse-grained model. The scope and potential of the model is demonstrated by simulating DNA tweezers, an iconic nanodevice, and a two-footed DNA walker - the first time that coarse-grained modelling has been applied to dynamic DNA nanotechnology.
The book is about the key elements required for designing, building and controlling effective artificial swarms comprised of multiple moving physical agents. Therefore this book presents the fundamentals of each of those key elements in the particular frame of dynamic swarming, specifically exposing the profound connections between these elements and establish some general design principles for swarming behaviors. This scientific endeavor requires an inter-disciplinary approach: biomimetic inspiration from ethology and ecology, study of social information flow, analysis of temporal and adaptive signaling network of interaction, considerations of control of networked real-time systems, and lastly, elements of complex adaptive dynamical systems. This book offers a completely new perspective on the scientific understanding of dynamic collective behaviors thanks to its multi-disciplinary approach and its focus on artificial swarm of physical agents. Two of the key problems in understanding the emergence of swarm intelligent behaviors are identifying the social interaction rules a.k.a. the behavioral algorithm and uncovering how information flows between swarming agents. While most books about swarm dynamics have been focusing on the former, this book emphasizes the much-less discussed topic of distributed information flow, always with the aim of establishing general design principles.
There are many examples of cooperation in Nature: cells cooperate to form tissues, organs cooperate to form living organisms, and individuals cooperate to raise their offspring or to hunt. However, why cooperation emerges and survives in hostile environments, when defecting would be a much more profitable short-term strategy, is a question that still remains open. During the past few years, several explanations have been proposed, including kin and group selection, punishment and reputation mechanisms, or network reciprocity. This last one will be the center of the present study. The thesis explores the interface between the underlying structure of a given population and the outcome of the cooperative dynamics taking place on top of it, (namely, the Prisoner's Dilemma Game). The first part of this work analyzes the case of a static system, where the pattern of connections is fixed, so it does not evolve over time. The second part develops two models for growing topologies, where the growth and the dynamics are entangled. |
You may like...
Java How to Program, Late Objects…
Paul Deitel, Harvey Deitel
Paperback
Web Portal Design, Implementation…
Jana Polgar, Greg Adamson
Hardcover
R4,798
Discovery Miles 47 980
Learn to Design a Website for Your…
Michael Nelson, David Ezeanaka
Hardcover
R466
Discovery Miles 4 660
Demand-Driven Web Services - Theory…
Zhaohao Sun, John Yearwood
Hardcover
R8,127
Discovery Miles 81 270
Web-Based Services - Concepts…
Information Reso Management Association
Hardcover
R16,895
Discovery Miles 168 950
|