![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics
The aim of this book is to comment on, and clarify, the mathematical aspects of the theory of thermodynamics. The standard presentations of the subject are often beset by a number of obscurities associated with the words "state," "reversible," "irreversible," and "quasi-static." This book is written in the belief that such obscurities are best removed not by the formal axiomatization of thermodynamics, but by setting the theory in the wider context of a genuine field theory which incorporates the effects of heat conduction and intertia, and proving appropriate results about the governing differential equations of this field theory. Even in the simplest one-dimensional case it is a nontrivial task to carry through the details of this program, and many challenging problems remain open.
This Brief describes heat transfer and pressure drop in heat transfer enhancement by insert devices and integral roughness. The authors deal with twisted-tape insert laminar and turbulent flow in tubes and annuli in smooth tubes and rough tubes, segmented twisted-tape inserts, displaced enhancement devices, wire coil inserts, extended surface inserts and tangential injection devices. The articles also address transverse and helical integral rib roughness, corrugated tube roughness, 3D and 2D roughness, rod bundles, outside roughness for cross flow, non-circular channels, Reynolds analogy and similarity law, numerical simulation and predictive models. The book is ideal for professionals and researchers working with thermal management in devices.
This thesis deals with two main procedures performed with the ATLAS detector at the Large Hadron Collider (LHC). The noise description in the hadronic calorimeter TileCal represents a very valuable technical job. The second part presents a fruitful physics analysis - the cross section measurement of the process p+p Z0 + . The Monte Carlo simulations of the TileCal are described in the first part of the thesis, including a detailed treatment of the electronic noise and multiple interactions (so-called pile-up). An accurate description of both is crucial for the reconstruction of e.g. jets or hadronic tau-jets. The second part reports a Standard Model measurement of the Z0 + process with the emphasis on the final state with an electron and a hadronically decaying tau-lepton. The Z0 + channel forms the dominant background in the search for Higgs bosons decaying into tau lepton pairs, and thus the good understanding achieved here can facilitate more sensitive Higgs detection."
This book introduces and discusses the analysis of interacting many-body complex systems exhibiting spontaneous synchronization from the perspective of nonequilibrium statistical physics. While such systems have been mostly studied using dynamical system theory, the book underlines the usefulness of the statistical physics approach to obtain insightful results in a number of representative dynamical settings. Although it is intractable to follow the dynamics of a particular initial condition, statistical physics allows to derive exact analytical results in the limit of an infinite number of interacting units. Chapter one discusses dynamical characterization of individual units of synchronizing systems as well as of their interaction and summarizes the relevant tools of statistical physics. The latter are then used in chapters two and three to discuss respectively synchronizing systems with either a first- or a second-order evolution in time. This book provides a timely introduction to the subject and is meant for the uninitiated as well as for experienced researchers working in areas of nonlinear dynamics and chaos, statistical physics, and complex systems.
Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates.
As a companion to the undergraduate textbook "Physical Chemistry from a Different Angle", this workbook offers an excellent opportunity to deepen the understanding of the concepts presented in the textbook by addressing specific problems. The workbook is divided into two parts: a first part with nearly 200 exercises and a second part providing the corresponding detailed solutions with helpful comments, enabling students to learn independently.
This book presents a vivid argument for the almost lost idea of a unity of all natural sciences. It starts with the "strange" physics of matter, including particle physics, atomic physics and quantum mechanics, cosmology, relativity and their consequences (Chapter I), and it continues by describing the properties of material systems that are best understood by statistical and phase-space concepts (Chapter II). These lead to entropy and to the classical picture of quantitative information, initially devoid of value and meaning (Chapter III). Finally, "information space" and dynamics within it are introduced as a basis for semantics (Chapter IV), leading to an exploration of life and thought as new problems in physics (Chapter V). Dynamic equations - again of a strange (but very general) nature - bring about the complex familiarity of the world we live in. Surprising new results in the life sciences open our eyes to the richness of physical thought, and they show us what can and what cannot be explained by a Darwinian approach. The abstract physical approach is applicable to the origins of life, of meaningful information and even of our universe.
The only text to cover both thermodynamic and statistical mechanics--allowing students to fully master thermodynamics at the macroscopic level. Presents essential ideas on critical phenomena developed over the last decade in simple, qualitative terms. This new edition maintains the simple structure of the first and puts new emphasis on pedagogical considerations. Thermostatistics is incorporated into the text without eclipsing macroscopic thermodynamics, and is integrated into the conceptual framework of physical theory.
This book presents an introduction to Evolutionary Game Theory (EGT) which is an emerging field in the area of complex systems attracting the attention of researchers from disparate scientific communities. EGT allows one to represent and study several complex phenomena, such as the emergence of cooperation in social systems, the role of conformity in shaping the equilibrium of a population, and the dynamics in biological and ecological systems.Since EGT models belong to the area of complex systems, statistical physics constitutes a fundamental ingredient for investigating their behavior. At the same time, the complexity of some EGT models, such as those realized by means of agent-based methods, often require the implementation of numerical simulations. Therefore, beyond providing an introduction to EGT, this book gives a brief overview of the main statistical physics tools (such as phase transitions and the Ising model) and computational strategies for simulating evolutionary games (such as Monte Carlo algorithms on lattices). This book will appeal to students and researchers in this burgeoning field of complex systems.
Arturo Carsetti According to molecular Biology, true invariance (life) can exist only within the framework of ongoing autonomous morphogenesis and vice versa. With respect to this secret dialectics, life and cognition appear as indissolubly interlinked. In this sense, for instance, the inner articulation of conceptual spaces appears to be linked to an inner functional development based on a continuous activity of selection and "anchorage" realised on semantic grounds. It is the work of "invention" and g- eration (in invariance), linked with the "rooting" of meaning, which determines the evolution, the leaps and punctuated equilibria, the conditions related to the unfo- ing of new modalities of invariance, an invariance which is never simple repetition and which springs on each occasion through deep-level processes of renewal and recovery. The selection perpetrated by meaning reveals its autonomy aboveall in its underpinning, in an objective way, the ongoing choice of these new modalities. As such it is not, then, concerned only with the game of "possibles," offering itself as a simple channel for pure chance, but with providing a channel for the articulation of the " le" in the humus of a semantic (and embodied) net in order to prepare the necessary conditionsfor a continuousrenewal and recoveryof original creativity. In effect, it is this autonomy in inventing new possible modules of incompressibility whichdeterminestheactualemergenceofnew(andtrue)creativity, whichalsotakes place through the "narration" of the effected construction.
This book is based on many years of teaching statistical and thermal physics. It assumes no previous knowledge of thermodynamics, kinetic theory, or probability---the only prerequisites are an elementary knowledge of classical and modern physics, and of multivariable calculus. The first half of the book introduces the subject inductively but rigorously, proceeding from the concrete and specific to the abstract and general. In clear physical language the book explains the key concepts, such as temperature, heat, entropy, free energy, chemical potential, and distributions, both classical and quantum. The second half of the book applies these concepts to a wide variety of phenomena, including perfect gases, heat engines, and transport processes. Each chapter contains fully worked examples and real-world problems drawn from physics, astronomy, biology, chemistry, electronics, and mechanical engineering.
Finite element methods have become ever more important to engineers as tools for design and optimization, now even for solving non-linear technological problems. However, several aspects must be considered for finite-element simulations which are specific for non-linear problems: These problems require the knowledge and the understanding of theoretical foundations and their finite-element discretization as well as algorithms for solving the non-linear equations. This book provides the reader with the required knowledge covering the complete field of finite element analyses in solid mechanics. It is written for advanced students in engineering fields but serves also as an introduction into non-linear simulation for the practising engineer.
The accurate measurement of temperature is a vital parameter in many fields of engineering and scientific practice. Responding to emerging trends, this classic reference has been fully revised to include coverage of the latest instrumentation and measurement methods. Featuring:
Thermodynamics Problem Solving in Physical Chemistry: Study Guide and Map is an innovative and unique workbook that guides physical chemistry students through the decision-making process to assess a problem situation, create appropriate solutions, and gain confidence through practice solving physical chemistry problems. The workbook includes six major sections with 20 - 30 solved problems in each section that span from easy, single objective questions to difficult, multistep analysis problems. Each section of the workbook contains key points that highlight major features of the topic to remind students of what they need to apply to solve problems in the topic area. Key Features: Provides instructor access to a visual map depicting how all equations used in thermodynamics are connected and how they are derived from the three major energy laws. Acts as a guide in deriving the correct solution to a problem. Illustrates the questions students should ask themselves about the critical features of the concepts to solve problems in physical chemistry Can be used as a stand-alone product for review of Thermodynamics questions for major tests.
This book gives a rigorous treatment of entanglement measures in the general context of quantum field theory. It covers a broad range of models and the use of fields allows us to properly take the localization of systems into account. The required mathematical techniques are introduced in a self-contained way.
This book touches upon various aspects of a very interesting, and growing in popularity category of models of dynamical systems. These are the so-called fractional-order systems. Such models are not only relevant for many fields of science and technology, but may also find numerous applications in other disciplines applying the mathematical modelling tools. Thus, the book is intended for a very wide audience of professionals who want to expand their knowledge of systems modelling and its applications. The book includes the selections of papers presented at the International Conference on Fractional Calculus and its Applications organized by the Warsaw University of Technology and was held online on 6-8 September 2021. The International Conference on Fractional Calculus and its Applications (ICFDA) has an almost twenty years history. It started in Bordeaux (France) in 2004, followed by Porto (Portugal) 2006, Istanbul (Turkey) 2008, Badajoz (Spain) 2010, Nanjing (China) 2012, Catania (Italy) 2014, Novi Sad (Serbia) 2016, Amman (Jordan) 2018. Next ICFDA was planned in 2020 in Warsaw (Poland), but COVID-19 pandemic shifted it to 6-8 September 2021. Hence, the organizers were forced to change the form of the conference to the online one. In the volume twenty eight high-quality research papers presented during the ICFDA 2021 eleven Regular Sessions with an additional online Discussion Session are presented. The presented papers are scientifically inspiring, leading to new fruitful ideas. They cover a very broad range of many disciplines. Nowadays, and especially in such a subject as fractional calculus, it is very difficult to assign papers to specific scientific areas. So, many of the papers included have an interdisciplinary character.
Thermodynamics is fundamental to university and college curricula in chemistry, physics, engineering and many life sciences around the world. It is also notoriously difficult for students to understand, learn and apply. What makes this book different, and special, is the clarity of the text. The writing style is fluid, natural and lucid, and everything is explained in a logical and transparent manner. Thermodynamics is a deep, and important, branch of science, and this book does not make it "easy". But it does make it intelligible. This book introduces a new, 'Fourth Law' of Thermodynamics' based on the notion of Gibbs free energy, which underpins almost every application of thermodynamics and which the authors claim is worthy of recognition as a 'law'. The last four chapters bring thermodynamics into the twenty-first century, dealing with bioenergetics (how living systems capture and use free energy), macromolecule assembly (how proteins fold), and macromolecular aggregation (how, for example, virus capsids assemble). This is of great current relevance to students of biochemistry, biochemical engineering and pharmacy, and is covered in very few other texts on thermodynamics. The book also contains many novel and effective examples, such as the explanation of why friction is irreversible, the proof of the depression of the freezing point, and the explanation of the biochemical standard state.
This book focuses on the development and set-up of fibre Bragg grating (FBG) and no-core fibre (NCF) sensors. It discusses the properties of the sensors and modelling of the resulting devices, which include electronic, optoelectronic, photovoltaic, and spintronic devices. In addition to providing detailed explanations of the properties of FBG and NCF sensors, it features a wealth of instructive illustrations and tables, helping to visualize the respective devices' functions.
An introductory textbook exploring the subject of Lagrangian and Hamiltonian dynamics, with a relaxed and self-contained setting. Lagrangian and Hamiltonian dynamics is the continuation of Newton's classical physics into new formalisms, each highlighting novel aspects of mechanics that gradually build in complexity to form the basis for almost all of theoretical physics. Lagrangian and Hamiltonian dynamics also acts as a gateway to more abstract concepts routed in differential geometry and field theories and can be used to introduce these subject areas to newcomers. Journeying in a self-contained manner from the very basics, through the fundamentals and onwards to the cutting edge of the subject, along the way the reader is supported by all the necessary background mathematics, fully worked examples, thoughtful and vibrant illustrations as well as an informal narrative and numerous fresh, modern and inter-disciplinary applications. The book contains some unusual topics for a classical mechanics textbook. Most notable examples include the 'classical wavefunction', Koopman-von Neumann theory, classical density functional theories, the 'vakonomic' variational principle for non-holonomic constraints, the Gibbs-Appell equations, classical path integrals, Nambu brackets and the full framing of mechanics in the language of differential geometry.
This book presents an innovative control system design process motivated by renewable energy electric grid integration problems. The concepts developed result from the convergence of research and development goals which have important concepts in common: exergy flow, limit cycles, and balance between competing power flows. A unique set of criteria is proposed to design controllers for a class of nonlinear systems. A combination of thermodynamics with Hamiltonian systems provides the theoretical foundation which is then realized in a series of connected case studies. It allows the process of control design to be viewed as a power flow control problem, balancing the power flowing into a system against that being dissipated within it and dependent on the power being stored in it - an interplay between kinetic and potential energies. Human factors and the sustainability of self-organizing systems are dealt with as advanced topics.
Thermodynamically constrained averaging theory provides a consistent method for upscaling conservation and thermodynamic equations for application in the study of porous medium systems. The method provides dynamic equations for phases, interfaces, and common curves that are closely based on insights from the entropy inequality. All larger scale variables in the equations are explicitly defined in terms of their microscale precursors, facilitating the determination of important parameters and macroscale state equations based on microscale experimental and computational analysis. The method requires that all assumptions that lead to a particular equation form be explicitly indicated, a restriction which is useful in ascertaining the range of applicability of a model as well as potential sources of error and opportunities to improve the analysis.
The book provides a systematic view on flammability and a collection of solved engineering problems in the fields of dilution and purge, mine gas safety, clean burning safety and gas suppression modeling. For the first time, fundamental principles of energy conservation are used to develop theoretical flammability diagrams and are then explored to understand various safety-related mixing problems. This provides the basis for a fully-analytical solution to any flammability problem. Instead of the traditional view that flammability is a fundamental material property, here flammability is discovered to be a result of the explosibility of air and the ignitability of fuel, or a process property. By exploring the more fundamental concepts of explosibility and ignitability, the safety targets of dilution and purge can be better defined and utilized for guiding safe operations in process safety. This book provides various engineering approaches to mixture flammability, benefiting not only the safety students, but also field operators, as a useful resource for the safe handling of flammable gases and liquids. It will be useful to anyone who worries about the ignition potential of a flammable mixture.
This work presents a series of experiments with ultracold one-dimensional Bose gases, which establish said gases as an ideal model system for exploring a wide range of non-equilibrium phenomena. With the help of newly developed tools, like full distributions functions and phase correlation functions, the book reveals the emergence of thermal-like transient states, the light-cone-like emergence of thermal correlations and the observation of generalized thermodynamic ensembles. This points to a natural emergence of classical statistical properties from the microscopic unitary quantum evolution, and lays the groundwork for a universal framework of non-equilibrium physics. The thesis investigates a central question that is highly contested in quantum physics: how and to which extent does an isolated quantum many-body system relax? This question arises in many diverse areas of physics, and many of the open problems appear at vastly different energy, time and length scales, ranging from high-energy physics and cosmology to condensed matter and quantum information. A key challenge in attempting to answer this question is the scarcity of quantum many-body systems that are both well isolated from the environment and accessible for experimental study. |
You may like...
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,671
Discovery Miles 46 710
Molecular Energetics - Consensed-Phase…
Jose A. Martinho Simoes, Manuel Minas da Piedade
Hardcover
R2,661
Discovery Miles 26 610
Nonequilibrium Thermodynamics…
Yasar Demirel, Vincent Gerbaud
Paperback
|