![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics
The book aims to explain the basic ideas of thermal physics intuitively and in the simplest possible way. It is aimed at making the reader feel comfortable with the ideas of entropy and free energy. Thermal physics is prone to misunderstanding, confusion and is often being overlooked. However, a good foundation is necessary to prepare the reader for advanced level studies.
This book explores the challenges our society faces in making the transition to renewable resource use in a way that is truly sustainable - environmentally, economically and socially. After exploring the physical limits the laws of thermodynamics impose on resource exploitation, the book outlines options for managing resources within these limits. It then moves on to look at the resources themselves (from fossil fuels, through minerals to renewable resources such as timber) and the salient question of how the relentless increase in consumption is putting untenable strain on resource use. Case studies investigate what is being done across a range of sectors - and what is and isn't working. The second half of the book turns to solutions, from the promise of industrial ecology to a new economy based on renewable resources such as biobased materials from agricultural crops and forests. Suitable for under- and postgraduate courses on environmental limits and resource use, and continuing professional development - particularly resource management, materials, industrial ecology, energy, resource economics and engineering.
This book explores the challenges our society faces in making the transition to renewable resource use in a way that is truly sustainable - environmentally, economically and socially. After exploring the physical limits the laws of thermodynamics impose on resource exploitation, the book outlines options for managing resources within these limits. It then moves on to look at the resources themselves (from fossil fuels, through minerals to renewable resources such as timber) and the salient question of how the relentless increase in consumption is putting untenable strain on resource use. Case studies investigate what is being done across a range of sectors - and what is and isn't working. The second half of the book turns to solutions, from the promise of industrial ecology to a new economy based on renewable resources such as biobased materials from agricultural crops and forests. Suitable for under- and postgraduate courses on environmental limits and resource use, and continuing professional development - particularly resource management, materials, industrial ecology, energy, resource economics and engineering.
This book covers in great detail the Rouse-segment-based molecular theories in polymer viscoelasticity -- the Rouse theory and the extended reptation theory (based on the framework of the Doi-Edwards theory) -- that have been shown to explain experimental results in a consistently quantitative way. The explanation for the 3.4 power law of viscosity, quantitative line-shape analyses of viscoelastic responses and agreements between different sorts of viscoelastic responses, the consistency between the viscoelasticity and diffusion results, the clarification of the onset of entangelement, the discovery of the number of entanglement strands per cubed entanglement distance being a universal constant and the basic mechanism of the glass transition-related thermorheological complexity are discussed or shown in great detail. The mystery behind the success of the Rouse-segment-based molecular theories over the entropic region of a viscoelastic response is revealed by the Monte Carlo simulations on the Fraenkel chains. Specifically, the simulation studies give a natural explanation for the coexistence of the energy-driven and entropy-driven modes in a viscoelastic response and provide a theoretical basis resolving the paradox that the experimentally determined sizes of Rouse and Kuhn segments are nearly the same. This book starts from a very fundamental level; each chapter is built upon the contents of the previous chapters. Thus, the readers may use the book as a textbook and eventually reach an advanced research level. This book is also a useful source of reference for physicists, chemists and material scientists.
Pendulum is the simplest nonlinear system, which, however, provides the means for the description of different phenomena in Nature that occur in physics, chemistry, biology, medicine, communications, economics and sociology. The chaotic behavior of pendulum is usually associated with the random force acting on a pendulum (Brownian motion). Another type of chaotic motion (deterministic chaos) occurs in nonlinear systems with only few degrees of freedom. This book presents a comprehensive description of these phenomena going on in underdamped and overdamped pendula subject to additive and multiplicative periodic and random forces. No preliminary knowledge, such as complex mathematical or numerical methods, is required from a reader other than undergraduate courses in mathematical physics. A wide group of researchers, along with students and teachers will, thus, benefit from this definitive book on nonlinear dynamics.
This book provides a comprehensive introduction to the theory of phase transitions and critical phenomena. The content covers a period of more than 100 years of theoretical research of condensed matter phases and phase transitions providing a clear interrelationship with experimental problems. It starts from certain basic University knowledge of thermodynamics, statistical physics and quantum mechanics. The text is illustrated with classic examples of phase transitions. Various types of phase transition and (multi)critical points are introduced and explained. The classic aspects of the theory are naturally related with the modern developments. This interrelationship and the field-theoretical renormalization group method are presented in details. The main applications of the renormalization group methods are presented. Special attention is paid to the description of quantum phase transitions. This edition contains a more detailed presentation of the renormalization group method and its applications to particular systems.
This book provides a comprehensive introduction to the theory of phase transitions and critical phenomena. The content covers a period of more than 100 years of theoretical research of condensed matter phases and phase transitions providing a clear interrelationship with experimental problems. It starts from certain basic University knowledge of thermodynamics, statistical physics and quantum mechanics. The text is illustrated with classic examples of phase transitions. Various types of phase transition and (multi)critical points are introduced and explained. The classic aspects of the theory are naturally related with the modern developments. This interrelationship and the field-theoretical renormalization group method are presented in details. The main applications of the renormalization group methods are presented. Special attention is paid to the description of quantum phase transitions. This edition contains a more detailed presentation of the renormalization group method and its applications to particular systems.
This textbook is for undergraduate students on a basic course in Statistical Mechanics. The prerequisite is thermodynamics. It begins with a study of three situations -- the closed system and the systems in thermal contact with a reservoir -- in order to formulate the important fundamentals: entropy from Boltzmann formula, partition function and grand partition function. Through the presentation of quantum statistics, Bose statistics and Fermi-Dirac statistics are established, including as a special case the classical situation of Maxell-Boltzmann statistics. A series of examples ensue it: the harmonic oscillator, the polymer chain, the two level system, bosons (photons, phonons, and the Bose-Einstein condensation) and fermions (electrons in metals and in semiconductors). A compact historical note on influential scientists forms the concluding chapter. The unique presentation starts off with the principles, elucidating the well-developed theory, and only thereafter the application of theory. Calculations on the main steps are detailed, leaving behind minimal gap. The author emphasizes with theory the link between the macroscopic world (thermodynamics) and the microscopic world.
This textbook is for undergraduate students on a basic course in Statistical Mechanics. The prerequisite is thermodynamics. It begins with a study of three situations -- the closed system and the systems in thermal contact with a reservoir -- in order to formulate the important fundamentals: entropy from Boltzmann formula, partition function and grand partition function. Through the presentation of quantum statistics, Bose statistics and Fermi-Dirac statistics are established, including as a special case the classical situation of Maxell-Boltzmann statistics. A series of examples ensue it: the harmonic oscillator, the polymer chain, the two level system, bosons (photons, phonons, and the Bose-Einstein condensation) and fermions (electrons in metals and in semiconductors). A compact historical note on influential scientists forms the concluding chapter. The unique presentation starts off with the principles, elucidating the well-developed theory, and only thereafter the application of theory. Calculations on the main steps are detailed, leaving behind minimal gap. The author emphasizes with theory the link between the macroscopic world (thermodynamics) and the microscopic world.
This book is designed for use in an introductory course in thermodynamics. It is aimed at students of Physics, Chemistry, Materials Science, and Engineering. As an undergraduate text, it gives a clear description of the theoretical framework of thermodynamics, while providing specific examples of its use in a wide variety of problems. These examples include topics that are atypical of undergraduate texts, such as biological systems, atmospheric phenomena, and polymers. The narrative is infused with historical notes on the characters who make up the story of thermodynamics, enlivening the material while keeping the reader engaged.
This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is just its dynamical behavior that is described by using a family of variables ("observables" of the system). The book departs from the principle that ''dynamics is first'' and then tries to answer in what sense the sole dynamics determines the geometrical structures that have proved so useful to describe the dynamics in so many important instances. In this vein it is shown that most of the geometrical structures that are used in the standard presentations of classical dynamics (Jacobi, Poisson, symplectic, Hamiltonian, Lagrangian) are determined, though in general not uniquely, by the dynamics alone. The same program is accomplished for the geometrical structures relevant to describe quantum dynamics. Finally, it is shown that further properties that allow the explicit description of the dynamics of certain dynamical systems, like integrability and super integrability, are deeply related to the previous development and will be covered in the last part of the book. The mathematical framework used to present the previous program is kept to an elementary level throughout the text, indicating where more advanced notions will be needed to proceed further. A family of relevant examples is discussed at length and the necessary ideas from geometry are elaborated along the text. However no effort is made to present an ''all-inclusive'' introduction to differential geometry as many other books already exist on the market doing exactly that. However, the development of the previous program, considered as the posing and solution of a generalized inverse problem for geometry, leads to new ways of thinking and relating some of the most conspicuous geometrical structures appearing in Mathematical and Theoretical Physics.
This volume presents a collection of original and peer-reviewed articles related with the applications of Statistical Physics dedicated to Professor Dr Leopoldo Garcia-Colin, in commemoration of his 80th birthday in 2010. Professor Garcia-Colin has worked in many different fields of statistical physics, and has applied it to biological physics, solid state physics, relativity and cosmology. These are pioneering works of Prof Garcia-Colin involved in all various fields which have their roots in Mexico. His influence is found in each of these works that cover a wide range of topics including thermodynamics, statistical mechanics and kinetic theory applied to biological systems, cosmology and condensed matter, among others.Papers contributed by important experts in the field, such as J Lebowitz, as well as the latest classical applications of statistical physics can be found in this volume.
This book is devoted to analysis of Monte Carlo methods developed in rarefied gas dynamics. Presented is the short history of the development of such methods, described are their main properties, their advantages and deficiencies. It is shown that the contemporary stage in the progress of computational methods cannot be regarded without a complex approach to the preparation of algorithms taking into account all the peculiarities of the problem under consideration, that is, of the physical nature of a process, the mathematical model and the theoretical aspects of computational mathematics and stochastic processes. Thoroughly investigated is the possibility of application of Monte Carlo methods in some kindred areas of science which are non-traditional for the use of statistical modeling (continuous media, turbulence). Considered are the possible directions of development of statistical modeling.
This is the first comprehensive monograph on a new thermodynamic theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the local equilibrium hypothesis is abandoned, and the basic variables are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a wide discussion of the foundations and the scope of the most current theories of non-equilibrium thermodynamics. The present edition reflects new developments in the theory of applications, adds new problems and provides a more detailed comparison with other fields of active research. It contains 130 proposed problems, whose detailed solutions, as well as wide bibliography on extended irreversible thermodynamics and related topices, may be unloaded from the www.uab.es/dep-fisica/eit website.
This is a masters/graduate level textbook on statistical physics. The basics of the discipline and its application in the current topics of interest like BoseEinstein condensate, statistical astrophysics and phase transitions have been discussed with thoroughness. This is a systematic introduction and development of a course material tried successful over a number of years. Feedback from the students tells that it has immensely helped them in their later research.
This practical introduction to the analysis of data collected from reliability studies offers clear, detailed explanations of the best and most up-to-date techniques available. Topics include survival analysis with covariates, the assessment of systems performance, reliability growth models, dependency (which encompasses both engineering and statistical approaches), and practical aspects of analysis. A wealth of interesting case studies appear throughout the text, lending "real-world" examples to the more theoretical discussions. Throughout, the authors stress the need for investigators to understand the background and nature of their data if they are to select the most appropriate analysis method. They also provide in-depth treatments of the mathematical and statistical bases underlying each technique. Accessible and comprehensive, the book will be welcomed by students, professionals, and statisticians who are interested in the practical aspects of reliability data analysis.
Statistical Mechanics: Fundamentals and Model Solutions, Second Edition Fully updated throughout and with new chapters on the Mayer expansion for classical gases and on cluster expansion for lattice models, this new edition of Statistical Mechanics: Fundamentals and Model Solutions provides a comprehensive introduction to equilibrium statistical mechanics for advanced undergraduate and graduate students of mathematics and physics. The author presents a fresh approach to the subject, setting out the basic assumptions clearly and emphasizing the importance of the thermodynamic limit and the role of convexity. With problems and solutions, the book clearly explains the role of models for physical systems, and discusses and solves various models. An understanding of these models is of increasing importance as they have proved to have applications in many areas of mathematics and physics. Features Updated throughout with new content from the field An established and well-loved textbook Contains new problems and solutions for further learning opportunity Author Professor Teunis C. Dorlas is at the Dublin Institute for Advanced Studies, Ireland.
How can one construct dynamical systems obeying the first and second laws of thermodynamics: mean energy is conserved and entropy increases with time? This book answers the question for classical probability (Part I) and quantum probability (Part II). A novel feature is the introduction of heat particles which supply thermal noise and represent the kinetic energy of the molecules. When applied to chemical reactions, the theory leads to the usual nonlinear reaction-diffusion equations as well as modifications of them. These can exhibit oscillations, or can converge to equilibrium. In this second edition, the text is simplified in parts and the bibliography has been expanded. The main difference is the addition of two new chapters; in the first, classical fluid dynamics is introduced. A lattice model is developed, which in the continuum limit gives us the Euler equations. The five Navier???Stokes equations are also presented, modified by a diffusion term in the continuity equation. The second addition is in the last chapter, which now includes estimation theory, both classical and quantum, using information geometry.
How can one construct dynamical systems obeying the first and second laws of thermodynamics: mean energy is conserved and entropy increases with time? This book answers the question for classical probability (Part I) and quantum probability (Part II). A novel feature is the introduction of heat particles which supply thermal noise and represent the kinetic energy of the molecules. When applied to chemical reactions, the theory leads to the usual nonlinear reaction-diffusion equations as well as modifications of them. These can exhibit oscillations, or can converge to equilibrium. In this second edition, the text is simplified in parts and the bibliography has been expanded. The main difference is the addition of two new chapters; in the first, classical fluid dynamics is introduced. A lattice model is developed, which in the continuum limit gives us the Euler equations. The five Navier???Stokes equations are also presented, modified by a diffusion term in the continuity equation. The second addition is in the last chapter, which now includes estimation theory, both classical and quantum, using information geometry.
In this unique book, the reader is invited to experience the joy of appreciating something which has eluded understanding for many years - entropy and the Second Law of Thermodynamics. The book has a two-pronged message: first, that the second law is not infinitely incomprehensible as commonly stated in most textbooks on thermodynamics, but can, in fact, be comprehended through sheer common sense; and second, that entropy is not a mysterious quantity that has resisted understanding but a simple, familiar and easily comprehensible concept.Written in an accessible style, the book guides the reader through an abundance of dice games and examples from everyday life. The author paves the way for readers to discover for themselves what entropy is, how it changes, and, most importantly, why it always changes in one direction in a spontaneous process.In this new edition, seven simulated games are included so that the reader can actually experiment with the games described in the book. These simulated games are meant to enhance the readers' understanding and sense of joy upon discovering the Second Law of Thermodynamics.
This book explores applications of computational intelligence in key and emerging fields of engineering, especially with regard to condition monitoring and fault diagnosis, inverse problems, decision support systems and optimization. These applications can be beneficial in a broad range of contexts, including: water distribution networks, manufacturing systems, production and storage of electrical energy, heat transfer, acoustic levitation, uncertainty and robustness of infinite-dimensional objects, fatigue failure prediction, autonomous navigation, nanotechnology, and the analysis of technological development indexes. All applications, mathematical and computational tools, and original results are presented using rigorous mathematical procedures. Further, the book gathers contributions by respected experts from 22 different research centers and eight countries: Brazil, Cuba, France, Hungary, India, Japan, Romania and Spain. The book is intended for use in graduate courses on applied computation, applied mathematics, and engineering, where tools like computational intelligence and numerical methods are applied to the solution of real-world problems in emerging areas of engineering.
This book is an introductory text on fundamental aspects of combustion including thermodynamics, heat and mass transfer and chemical kinetics which are used to systematically derive the basic concepts of combustion. Apart from the fundamental aspects, many of the emerging topics in the field like microscale combustion, combustion dynamics, oxy-fuel combustion and combustion diagnostics are also covered in the book. This would help the beginners in the subject to get initiated to the state of the art topics. Key Features: Coverage of the essential aspects of combustion engineering suitable for both beginners and practicing professionals Topics like entropy generation, microscale combustion, combustion diagnostics, second law-based analysis exclusive to the title Balanced treatment of thermodynamics, transport phenomena and chemical kinetics Discussion on state of the art techniques in combustion diagnostics Illustrates combustion of gaseous, liquid and solid fuels along with emission of pollutants and greenhouse gases
The principal message of this book is that thermodynamics and statistical mechanics will benefit from replacing the unfortunate, misleading and mysterious term "entropy" with a more familiar, meaningful and appropriate term such as information, missing information or uncertainty. This replacement would facilitate the interpretation of the "driving force" of many processes in terms of informational changes and dispel the mystery that has always enshrouded entropy.It has been 140 years since Clausius coined the term "entropy"; almost 50 years since Shannon developed the mathematical theory of "information" - subsequently renamed "entropy". In this book, the author advocates replacing "entropy" by "information", a term that has become widely used in many branches of science.The author also takes a new and bold approach to thermodynamics and statistical mechanics. Information is used not only as a tool for predicting distributions but as the fundamental cornerstone concept of thermodynamics, held until now by the term "entropy".The topics covered include the fundamentals of probability and information theory; the general concept of information as well as the particular concept of information as applied in thermodynamics; the re-derivation of the Sackur-Tetrode equation for the entropy of an ideal gas from purely informational arguments; the fundamental formalism of statistical mechanics; and many examples of simple processes the "driving force" for which is analyzed in terms of information.
The principal message of this book is that thermodynamics and statistical mechanics will benefit from replacing the unfortunate, misleading and mysterious term "entropy" with a more familiar, meaningful and appropriate term such as information, missing information or uncertainty. This replacement would facilitate the interpretation of the "driving force" of many processes in terms of informational changes and dispel the mystery that has always enshrouded entropy.It has been 140 years since Clausius coined the term "entropy"; almost 50 years since Shannon developed the mathematical theory of "information" - subsequently renamed "entropy". In this book, the author advocates replacing "entropy" by "information", a term that has become widely used in many branches of science.The author also takes a new and bold approach to thermodynamics and statistical mechanics. Information is used not only as a tool for predicting distributions but as the fundamental cornerstone concept of thermodynamics, held until now by the term "entropy".The topics covered include the fundamentals of probability and information theory; the general concept of information as well as the particular concept of information as applied in thermodynamics; the re-derivation of the Sackur-Tetrode equation for the entropy of an ideal gas from purely informational arguments; the fundamental formalism of statistical mechanics; and many examples of simple processes the "driving force" for which is analyzed in terms of information.
"A Modern Course in Statistical Physics" is a textbook that illustrates the foundations of equilibrium and non-equilibrium statistical physics, and the universal nature of thermodynamic processes, from the point of view of contemporary research problems. The book treats such diverse topics as the microscopic theory of critical phenomena, superfluid dynamics, quantum conductance, light scattering, transport processes, and dissipative structures, all in the framework of the foundations of statistical physics and thermodynamics. It shows the quantum origins of problems in classical statistical physics. One focus of the book is fluctuations that occur due to the discrete nature of matter, a topic of growing importance for nanometer scale physics and biophysics. Another focus concerns classical and quantum phase transitions, in both monatomic and mixed particle systems. This fourth edition extends the range of topics considered to include, for example, entropic forces, electrochemical processes in biological systems and batteries, adsorption processes in biological systems, diamagnetism, the theory of Bose-Einstein condensation, memory effects in Brownian motion, the hydrodynamics of binary mixtures. A set of exercises and problems is to be found at the end of each chapter and, in addition, solutions to a subset of the problems is provided. The appendices cover Exact Differentials, Ergodicity, Number Representation, Scattering Theory, and also a short course on Probability. |
You may like...
Measurements and their Uncertainties - A…
Ifan Hughes, Thomas Hase
Hardcover
R2,694
Discovery Miles 26 940
Chemical Thermodynamics: Principles and…
J. Bevan Ott, Juliana Boerio-Goates
Hardcover
R2,979
Discovery Miles 29 790
Computational Modeling of Intelligent…
Mostafa Baghani, Majid Baniassadi, …
Paperback
R3,933
Discovery Miles 39 330
Waste Biorefineries - Advanced Design…
Jinyue Yan, Chaudhary Awais Salman
Paperback
R3,239
Discovery Miles 32 390
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,671
Discovery Miles 46 710
|