![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Thermodynamics & statistical physics
Il testo si configura come un' introduzione alla fisica statistica rivolto in primo luogo a quei corsi di studio in ingegneria che piu hanno a che fare con le proprieta fisiche dei materiali, ed ha lo scopo di fornire le basi microscopiche del comportamento termodinamico di cui si fa uso sia in molti corsi tradizionali, quali quelli di termofluidica d'interesse per l'ingegneria chimica e nucleare, che in corsi rivolti ad applicazioni avanzate nella scienza dei materiali e nelle nanotecnologie. Particolare attenzione viene quindi dedicata all'impiego di metodi di fisica statistica nella scienza dei materiali, approfondendo tematiche relative alle vibrazioni nei solidi, ai processi di nucleazione liquido/vapore, alla struttura dello stato fluido e vetroso, ai plasmi, ai materiali magnetici, al gas di Fermi e alla superfluidita. Per il suo carattere generale, e per l'accento posto sui fondamenti della meccanica quantistica, il volume si presta comunque a costituire anche un testo introduttivo alla meccanica statistica per studenti dei corsi di laurea in fisica."
In many systems consisting of interacting subsystems, the complex interactions between elements can be represented using multilayer networks. However percolation, key to understanding connectivity and robustness, is not trivially generalised to multiple layers. This Element describes a generalisation of percolation to multilayer networks: weak multiplex percolation. A node belongs to a connected component if at least one of its neighbours in each layer is in this component. The authors fully describe the critical phenomena of this process. In two layers with finite second moments of the degree distributions the authors observe an unusual continuous transition with quadratic growth above the threshold. When the second moments diverge, the singularity is determined by the asymptotics of the degree distributions, creating a rich set of critical behaviours. In three or more layers the authors find a discontinuous hybrid transition which persists even in highly heterogeneous degree distributions, becoming continuous only when the powerlaw exponent reaches $1+1/(M-1)$ for $M$ layers.
Statistical physics examines the collective properties of large ensembles of particles, and is a powerful theoretical tool with important applications across many different scientific disciplines. This book provides a detailed introduction to classical and quantum statistical physics, including links to topics at the frontiers of current research. The first part of the book introduces classical ensembles, provides an extensive review of quantum mechanics, and explains how their combination leads directly to the theory of Bose and Fermi gases. This allows a detailed analysis of the quantum properties of matter, and introduces the exotic features of vacuum fluctuations. The second part discusses more advanced topics such as the two-dimensional Ising model and quantum spin chains. This modern text is ideal for advanced undergraduate and graduate students interested in the role of statistical physics in current research. 140 homework problems reinforce key concepts and further develop readers' understanding of the subject.
This book deals with certain important problems in Classical and Quantum Information Theory Quantum Information Theory, A Selection of Matrix Inequalities Stochastic Filtering Theory Applied to Electromagnetic Fields and Strings Wigner-distributions in Quantum Mechanics Quantization of Classical Field Theories Statistical Signal Processing Quantum Field Theory, Quantum Statistics, Gravity, Stochastic Fields and Information Problems in Information Theory It will be very helpful for students of Undergraduate and Postgraduate Courses in Electronics, Communication and Signal Processing. Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan or Bhutan).
Real networks comprise from hundreds to millions of interacting elements and permeate all contexts, from technology to biology to society. All of them display non-trivial connectivity patterns, including the small-world phenomenon, making nodes to be separated by a small number of intermediate links. As a consequence, networks present an apparent lack of metric structure and are difficult to map. Yet, many networks have a hidden geometry that enables meaningful maps in the two-dimensional hyperbolic plane. The discovery of such hidden geometry and the understanding of its role have become fundamental questions in network science giving rise to the field of network geometry. This Element reviews fundamental models and methods for the geometric description of real networks with a focus on applications of real network maps, including decentralized routing protocols, geometric community detection, and the self-similar multiscale unfolding of networks by geometric renormalization.
The general non equilibrium statistical approach, due to Zubarev, is presented briefly in Chapter 1. Chapter 2 is devoted to construction of an application of this approach to a statistical mechanical description of transport processes on a dividing surface between two immiscible fluids when singular densities of mass, and/or momentum, and/or energy are presented. In chapter 3 the shock wave in a gas is considered an interphase boundary of the gas-gas type. Chapters 4 and 5 fluctuations of flows of mass or momentum across the surfaces of sufficiently small liquid or solid particles, respectively, are discussed. Finally, chapter 6 discusses a generalization of the one-particle Brownian motion theory to many-particle situations, where the interparticle hydrodynamic ineraction are essential.
Higher-order networks describe the many-body interactions of a large variety of complex systems, ranging from the the brain to collaboration networks. Simplicial complexes are generalized network structures which allow us to capture the combinatorial properties, the topology and the geometry of higher-order networks. Having been used extensively in quantum gravity to describe discrete or discretized space-time, simplicial complexes have only recently started becoming the representation of choice for capturing the underlying network topology and geometry of complex systems. This Element provides an in-depth introduction to the very hot topic of network theory, covering a wide range of subjects ranging from emergent hyperbolic geometry and topological data analysis to higher-order dynamics. This Elements aims to demonstrate that simplicial complexes provide a very general mathematical framework to reveal how higher-order dynamics depends on simplicial network topology and geometry.
Complex networks datasets often come with the problem of missing information: interactions data that have not been measured or discovered, may be affected by errors, or are simply hidden because of privacy issues. This Element provides an overview of the ideas, methods and techniques to deal with this problem and that together define the field of network reconstruction. Given the extent of the subject, the authors focus on the inference methods rooted in statistical physics and information theory. The discussion is organized according to the different scales of the reconstruction task, that is, whether the goal is to reconstruct the macroscopic structure of the network, to infer its mesoscale properties, or to predict the individual microscopic connections.
Concise yet thorough, accessible, authoritative, and affordable. These are the hallmarks of books in the remarkable Physics and its Applications series. Thermodynamics is an essential part of any physical sciences education, but it is so full of pitfalls and subtleties, that many students fail to appreciate its elegance and power. In Thermal Physics, the author emphasizes understanding the basic ideas and shows how the important thermodynamics results can be simply obtained from the fundamental relations without getting lost in a maze of partial differentials. In this second edition, the author incorporated new sections on scales of temperature, availability, the degradation of energy, and lattice defects. The text contains ample illustrations and examples of applications of thermodynamics in physics, engineering, and chemistry.
Dealing with all aspects of Monte Carlo simulation of complex physical systems encountered in condensed matter physics and statistical mechanics, this book provides an introduction to computer simulations in physics. The 5th edition contains extensive new material describing numerous powerful algorithms and methods that represent recent developments in the field. New topics such as active matter and machine learning are also introduced. Throughout, there are many applications, examples, recipes, case studies, and exercises to help the reader fully comprehend the material. This book is ideal for graduate students and researchers, both in academia and industry, who want to learn techniques that have become a third tool of physical science, complementing experiment and analytical theory.
This suberb text is designed to introduce the fundamentals of the subject of statistical mechanics at a level suitable for students who meet the subject for the first time. The treatment given is designed to give the student a feeling for the topic of statistical mechanics without being held back by the need to understand complex mathematics. The text is concise and concentrates on the understanding of fundamental aspects. Numerous questions with worked solutions are given throughout.
Kinetic theory provides a microscopic description of many observable, macroscopic processes and has a wide range of important applications in physics, astronomy, chemistry, and engineering. This powerful, theoretical framework allows a quantitative treatment of many non-equilibrium phenomena such as transport processes in classical and quantum fluids. This book describes in detail the Boltzmann equation theory, obtained in both traditional and modern ways. Applications and generalizations describing non-equilibrium processes in a variety of systems are also covered, including dilute and moderately dense gases, particles in random media, hard sphere crystals, condensed Bose-Einstein gases, and granular materials. Fluctuation phenomena in non-equilibrium fluids, and related non-analyticities in the hydrodynamic equations are also discussed in some detail. A thorough examination of many topics concerning time dependent phenomena in material systems, this book describes both current knowledge as well as future directions of the field.
Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.
The science of networks represented a substantial change in the way we see natural and technological phenomena. Now we have a better understanding that networks are, in most cases, networks of networks or multi-layered networks. This book provides a summary of the research done during one of the largest and most multidisciplinary projects in network science and complex systems (Multiplex). The science of complex networks originated from the empirical evidence that most of the structures of systems such as the internet, sets of protein interactions, and collaboration between people, share (at least qualitatively) common structural properties. This book examines how properties of networks that interact with other networks can change dramatically. The authors show that, dependent on the properties of links that interconnect two or more networks, we may derive different conclusions about the function and the possible vulnerabilities of the overall system of networks. This book presents a series of novel theoretical results together with their applications, providing a comprehensive overview of the field.
Understand multiphase flows using multidisciplinary knowledge in physical principles, modelling theories, and engineering practices. This essential text methodically introduces the important concepts, governing mechanisms, and state-of-the-art theories, using numerous real-world applications, examples, and problems. Covers all major types of multiphase flows, including gas-solid, gas-liquid (sprays or bubbling), liquid-solid, and gas-solid-liquid flows. Introduces the volume-time-averaged transport theorems and associated Lagrangian-trajectory modelling and Eulerian-Eulerian multi-fluid modelling. Explains typical computational techniques, measurement methods and four representative subjects of multiphase flow systems. Suitable as a reference for engineering students, researchers, and practitioners, this text explores and applies fundamental theories to the analysis of system performance using a case-based approach.
Statistics lectures have been a source of much bewilderment and
frustration for generations of students. This book attempts to
remedy the situation by expounding a logical and unified approach
to the whole subject of data analysis.
Thermodynamics is the much abused slave of many masters * physicists who love the totally impractical Carnot process, * mechanical engineers who design power stations and refrigerators, * chemists who are successfully synthesizing ammonia and are puzzled by photosynthesis, * meteorologists who calculate cloud bases and predict foehn, boraccia and scirocco, * physico-chemists who vulcanize rubber and build fuel cells, * chemical engineers who rectify natural gas and distil f- mented potato juice, * metallurgists who improve steels and harden surfaces, * - trition counselors who recommend a proper intake of calories, * mechanics who adjust heat exchangers, * architects who construe - and often misconstrue - ch- neys, * biologists who marvel at the height of trees, * air conditioning engineers who design saunas and the ventilation of air plane cabins, * rocket engineers who create supersonic flows, et cetera. Not all of these professional groups need the full depth and breadth of ther- dynamics. For some it is enough to consider a well-stirred tank, for others a s- tionary nozzle flow is essential, and yet others are well-served with the partial d- ferential equation of heat conduction. It is therefore natural that thermodynamics is prone to mutilation; different group-specific meta-thermodynamics' have emerged which serve the interest of the groups under most circumstances and leave out aspects that are not often needed in their fields.
A multitude of processes in hydrology and environmental engineering are either random or entail random components which are characterized by random variables. These variables are described by frequency distributions. This book provides an overview of different systems of frequency distributions, their properties, and applications to the fields of water resources and environmental engineering. A variety of systems are covered, including the Pearson system, Burr system, and systems commonly applied in economics, such as the D'Addario, Dagum, Stoppa, and Esteban systems. The latter chapters focus on the Singh system and the frequency distributions deduced from Bessel functions, maximum entropy theory, and the transformations of random variables. The final chapter introduces the genetic theory of frequency distributions. Using real-world data, this book provides a valuable reference for researchers, graduate students, and professionals interested in frequency analysis.
The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.
This new edition covers contemporary directions of non-equilibrium statistical mechanics as well as classical methods of kinetics. Supplementary material on the non-equilibrium statistical operator (NSO) method for calculating kinetics coefficients describing spintronics is included in this new addition. This book is an easy-to-read text describing the fundamentals of the field.
This Brief describes heat transfer and pressure drop in heat transfer enhancement by insert devices and integral roughness. The authors deal with twisted-tape insert laminar and turbulent flow in tubes and annuli in smooth tubes and rough tubes, segmented twisted-tape inserts, displaced enhancement devices, wire coil inserts, extended surface inserts and tangential injection devices. The articles also address transverse and helical integral rib roughness, corrugated tube roughness, 3D and 2D roughness, rod bundles, outside roughness for cross flow, non-circular channels, Reynolds analogy and similarity law, numerical simulation and predictive models. The book is ideal for professionals and researchers working with thermal management in devices.
The Ising model provides a detailed mathematical description of ferromagnetism and is widely used in statistical physics and condensed matter physics. In this Student's Guide, the author demystifies the mathematical framework of the Ising model and provides students with a clear understanding of both its physical significance, and how to apply it successfully in their calculations. Key topics related to the Ising model are covered, including exact solutions of both finite and infinite systems, series expansions about high and low temperatures, mean-field approximation methods, and renormalization-group calculations. The book also incorporates plots, figures, and tables to highlight the significance of the results. Designed as a supplementary resource for undergraduate and graduate students, each chapter includes a selection of exercises intended to reinforce and extend important concepts, and solutions are also available for all exercises.
Physics on Your Feet (2nd Edition) is a significantly expanded collection of physics problems covering the broad range of topics in classical and modern physics that were, or could have been, asked at oral PhD exams at University of California at Berkeley. The questions are easy to formulate, but some of them can only be answered using an outside-of-the box approach. Detailed solutions are provided, from which the reader is guaranteed to learn a lot about the physicists' way of thinking. The book is also packed full of cartoons and dry humor to help take the edge off the stress and anxiety surrounding exams. This is a helpful guide for students preparing for their exams, as well as a resource for university lecturers looking for good instructive problems. No exams are necessary to enjoy the book! |
You may like...
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,671
Discovery Miles 46 710
New Trends in the Physics and Mechanics…
Martine Ben Amar, Alain Goriely, …
Hardcover
R2,505
Discovery Miles 25 050
Measurements and their Uncertainties - A…
Ifan Hughes, Thomas Hase
Hardcover
R2,694
Discovery Miles 26 940
Chemical Thermodynamics: Principles and…
J. Bevan Ott, Juliana Boerio-Goates
Hardcover
R2,979
Discovery Miles 29 790
Computational Modeling of Intelligent…
Mostafa Baghani, Majid Baniassadi, …
Paperback
R3,933
Discovery Miles 39 330
|