Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 14 of 14 matches in All Departments
During the last decade, many new concepts have been proposed for improving the performance of power rectifiers and transistors. The results of this research are dispersed in the technical literature among journal articles and abstracts of conferences. Consequently, the information is not readily available to researchers and practicing engineers in the power device community. There is no cohesive treatment of the ideas to provide an assessment of the relative merits of the ideas. Advanced Power Rectifier Concepts provides an in-depth treatment of the physics of operation of advanced power rectifiers. Analytical models for explaining the operation of all the advanced power rectifier devices will be developed. The results off numerical simulations will be provided to provide additional insight into the device physics and validate the analytical models. The results of two-dimensional simulations will be provided to corroborate the analytical models and provide greater insight into the device operation.
The advent of low temperature superconductors in the early 1960's converted what had been a laboratory curiosity with very limited possibilities to a prac tical means of fabricating electrical components and devices with lossless con ductors. Using liquid helium as a coolant, the successful construction and operation of high field strength magnet systems, alternators, motors and trans mission lines was announced. These developments ushered in the era of what may be termed cryogenic power engineering and a decade later successful oper ating systems could be found such as the 5 T saddle magnet designed and built in the United States by the Argonne National Laboratory and installed on an experimental power generating facility at the High Temperature Institute in Moscow, Russia. The field of digital computers provided an incentive of a quite different kind to operate at cryogenic temperatures. In this case, the objective was to ob tain higher switching speeds than are possible at ambient temperatures with the critical issue being the operating characteristics of semiconductor switches under cryogenic conditions. By 1980, cryogenic electronics was established as another branch of electric engineering."
During the last decade many new concepts have been proposed for improving the performance of power MOSFETs. The results of this research are dispersed in the technical literature among journal articles and abstracts of conferences. Consequently, the information is not readily available to researchers and practicing engineers in the power device community. There is no cohesive treatment of the ideas to provide an assessment of the relative merits of the ideas. "Advanced Power MOSFET Concepts" provides an in-depth treatment of the physics of operation of advanced power MOSFETs. Analytical models for explaining the operation of all the advanced power MOSFETs will be developed. The results of numerical simulations will be provided to give additional insight into the device physics and validate the analytical models. The results of two-dimensional simulations will be provided to corroborate the analytical models and give greater insight into the device operation.
Power semiconductor devices are widely used for the control and management of electrical energy. The improving performance of power devices has enabled cost reductions and efficiency increases resulting in lower fossil fuel usage and less environmental pollution. This book provides the first cohesive treatment of the physics and design of silicon carbide power devices with an emphasis on unipolar structures. It uses the results of extensive numerical simulations to elucidate the operating principles of these important devices.
The devices described in "Advanced MOS-Gated Thyristor Concepts" are utilized in microelectronics production equipment, in power transmission equipment, and for very high power motor control in electric trains, steel-mills, etc. Advanced concepts that enable improving the performance of power thyristors are discussed here, along with devices with blocking voltage capabilities of 5,000-V, 10,000-V and 15,000-V. Throughout the book, analytical models are generated to allow a simple analysis of the structures and to obtain insight into the underlying physics. The results of two-dimensional simulations are provided to corroborate the analytical models and give greater insight into the device operation.
Fundamentals of Power Semiconductor Devices provides an in-depth treatment of the physics of operation of power semiconductor devices that are commonly used by the power electronics industry. Analytical models for explaining the operation of all power semiconductor devices are shown. The treatment here focuses on silicon devices but includes the unique attributes and design requirements for emerging silicon carbide devices. The book will appeal to practicing engineers in the power semiconductor device community.
The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor, Second Edition provides the essential information needed by applications engineers to design new products using the device in sectors including consumer, industrial, lighting, transportation, medical and renewable energy. The IGBT device has proven to be a highly important Power Semiconductor, providing the basis for adjustable speed motor drives (used in air conditioning and refrigeration and railway locomotives), electronic ignition systems for gasoline powered motor vehicles and energy-saving compact fluorescent light bulbs. The book presents recent applications in plasma displays (flat-screen TVs) and electric power transmission systems, alternative energy systems and energy storage, but it is also used in all renewable energy generation systems, including solar and wind power. This book is the first available on the applications of the IGBT. It will unlock IGBT for a new generation of engineering applications, making it essential reading for a wide audience of electrical and design engineers, as well as an important publication for semiconductor specialists.
During the last decade many new concepts have been proposed for improving the performance of power MOSFETs. The results of this research are dispersed in the technical literature among journal articles and abstracts of conferences. Consequently, the information is not readily available to researchers and practicing engineers in the power device community. There is no cohesive treatment of the ideas to provide an assessment of the relative merits of the ideas. "Advanced Power MOSFET Concepts" provides an in-depth treatment of the physics of operation of advanced power MOSFETs. Analytical models for explaining the operation of all the advanced power MOSFETs will be developed. The results of numerical simulations will be provided to give additional insight into the device physics and validate the analytical models. The results of two-dimensional simulations will be provided to corroborate the analytical models and give greater insight into the device operation.
This is the first comprehensive resource of power device electrical characteristics in a cryogenic environment. Using theoretical and experimental knowledge from the literature, temperature dependence of fundamental silicon material parameters like intrinsic carrier concentration, carrier mobilities, lifetimes and bandgap narrowing was identified. The temperature dependent model of avalanche breakdown was developed using experimental data on numerous devices. A wide range of power devices, each with its own unique features, was chosen for theoretical and experimental analysis. Using these analyses, Schottky diodes, power MOSFETs, power BJTs, and power JFETs were optimized in the 300-77K temperature range. Cryogenic Operation of Silicon Power Devices presents the different characteristics of power devices operated below -55 C (220K). It provides data and physics based models for power devices operated at temperatures down to 77K for the first time within a single source. All commercially available devices have been included to provide comprehensive coverage.Also, a fundamental analysis of devices identifies the suitability of various devices to applications requiring cryogenic operations. A quantitative analysis of the relative strengths and weaknesses of these devices is also presented.
During the last decade, many new concepts have been proposed for improving the performance of power rectifiers and transistors. The results of this research are dispersed in the technical literature among journal articles and abstracts of conferences. Consequently, the information is not readily available to researchers and practicing engineers in the power device community. There is no cohesive treatment of the ideas to provide an assessment of the relative merits of the ideas. Advanced Power Rectifier Concepts provides an in-depth treatment of the physics of operation of advanced power rectifiers. Analytical models for explaining the operation of all the advanced power rectifier devices will be developed. The results off numerical simulations will be provided to provide additional insight into the device physics and validate the analytical models. The results of two-dimensional simulations will be provided to corroborate the analytical models and provide greater insight into the device operation.
Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design and Applications provides readers with a single resource on why these devices are superior to existing silicon devices. The book lays the groundwork for an understanding of an array of applications and anticipated benefits in energy savings. Authored by the Founder of the Power Semiconductor Research Center at North Carolina State University (and creator of the IGBT device), Dr. B. Jayant Baliga is one of the highest regarded experts in the field. He thus leads this team who comprehensively review the materials, device physics, design considerations and relevant applications discussed.
The IGBT device has proved to be a highly important Power Semiconductor, providing the basis for adjustable speed motor drives (used in air conditioning and refrigeration and railway locomotives), electronic ignition systems for gasolinepowered motor vehicles and energy-saving compact fluorescent light bulbs. Recent applications include plasma displays (flat-screen TVs) and electric power transmission systems, alternative energy systems and energy storage. This book is the first available to cover the applications of the IGBT, and provide the essential information needed by applications engineers to design new products using the device, in sectors including consumer, industrial, lighting, transportation, medical and renewable energy. The author, B. Jayant Baliga, invented the IGBT in 1980 while working for GE. His book will unlock IGBT for a new generation of engineering applications, making it essential reading for a wide audience of electrical engineers and design engineers, as well as an important publication for semiconductor specialists.
During the last 30 years, significant progress has been made to improve our understanding of gallium nitride and silicon carbide device structures, resulting in experimental demonstration of their enhanced performances for power electronic systems. Gallium nitride power devices made by the growth of the material on silicon substrates have gained a lot of interest. Power device products made from these materials have become available during the last five years from many companies.This comprehensive book discusses the physics of operation and design of gallium nitride and silicon carbide power devices. It can be used as a reference by practicing engineers in the power electronics industry and as a textbook for a power device or power electronics course in universities.
The devices described in "Advanced MOS-Gated Thyristor Concepts" are utilized in microelectronics production equipment, in power transmission equipment, and for very high power motor control in electric trains, steel-mills, etc. Advanced concepts that enable improving the performance of power thyristors are discussed here, along with devices with blocking voltage capabilities of 5,000-V, 10,000-V and 15,000-V. Throughout the book, analytical models are generated to allow a simple analysis of the structures and to obtain insight into the underlying physics. The results of two-dimensional simulations are provided to corroborate the analytical models and give greater insight into the device operation.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|