![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > Aerodynamics
Why do aircraft fly? How do their wings support them? In the early years of aviation, there was an intense dispute between British and German experts over the question of why and how an aircraft wing provides lift. The British, under the leadership of the great Cambridge mathematical physicist Lord Rayleigh, produced highly elaborate investigations of the nature of discontinuous flow, while the Germans, following Ludwig Prandtl in Gottingen, relied on the tradition called "technical mechanics" to explain the flow of air around a wing. Much of the basis of modern aerodynamics emerged from this remarkable episode, yet it has never been subject to a detailed historical and sociological analysis. In "The Enigma of the Aerofoil", David Bloor probes a neglected aspect of this important period in the history of aviation. Bloor draws upon papers by the participants - their restricted technical reports, meeting minutes, and personal correspondence, much of which has never before been published - and reveals the impact that the divergent mathematical traditions of Cambridge and Gottingen had on this great debate. Bloor also addresses why the British, even after discovering the failings of their own theory, remained resistant to the German circulation theory for more than a decade. The result is essential reading for anyone studying the history, philosophy, or sociology of science or technology - and for all those intrigued by flight.
Already established as the leading course text on aerodynamics,
Aerodynamics for Engineering Students has been revised to include
the latest developments in flow control and boundary layers, and
their influence on modern wing design, as well as introducing
recent advances in the understanding of fundamental fluid dynamics.
Computational methods have been expanded and updated to reflect the
modern approaches to aerodynamic design and research in the
aeronautical industry and elsewhere, and the structure of the text
has been developed to reflect current course requirements.
Why do aircraft fly? How do their wings support them? In the early years of aviation, there was an intense dispute between British and German experts over the question of why and how an aircraft wing provides lift. The British, under the leadership of the great Cambridge mathematical physicist Lord Rayleigh, produced highly elaborate investigations of the nature of discontinuous flow, while the Germans, following Ludwig Prandtl in Gottingen, relied on the tradition called "technical mechanics" to explain the flow of air around a wing. Much of the basis of modern aerodynamics emerged from this remarkable episode, yet it has never been subject to a detailed historical and sociological analysis. In "The Enigma of the Aerofoil", David Bloor probes a neglected aspect of this important period in the history of aviation. Bloor draws upon papers by the participants - their restricted technical reports, meeting minutes, and personal correspondence, much of which has never before been published - and reveals the impact that the divergent mathematical traditions of Cambridge and Gottingen had on this great debate. Bloor also addresses why the British, even after discovering the failings of their own theory, remained resistant to the German circulation theory for more than a decade. The result is essential reading for anyone studying the history, philosophy, or sociology of science or technology - and for all those intrigued by flight.
Building up from first principles and simple scenarios, this comprehensive introduction to rigid body dynamics gradually introduces readers to tools to address involved real-world problems, and cutting-edge research topics. Using a unique blend of conceptual, theoretical and practical approaches, concepts are developed and rigorously applied to practical examples in a consistent and understandable way. It includes discussion of real-world applications including robotics and vehicle dynamics, and over 40 thought-provoking fully worked examples to cement readers' understanding. Providing a wealth of resources allowing readers to confidently self-assess - including over 100 problems with solutions, over 400 high quality multiple choice questions, and end-of-chapter puzzles dealing with everyday situations - this is an ideal companion for undergraduate students in aerospace, civil and mechanical engineering.
Now reissued by Cambridge University Press, this sixth edition covers the fundamentals of aerodynamics using clear explanations and real-world examples. Aerodynamics concept boxes throughout showcase real-world applications, chapter objectives provide readers with a better understanding of the goal of each chapter and highlight the key 'take-home' concepts, and example problems aid understanding of how to apply core concepts. Coverage also includes the importance of aerodynamics to aircraft performance, applications of potential flow theory to aerodynamics, high-lift military airfoils, subsonic compressible transformations, and the distinguishing characteristics of hypersonic flow. Supported online by a solutions manual for instructors, MATLAB (R) files for example problems, and lecture slides for most chapters, this is an ideal textbook for undergraduates taking introductory courses in aerodynamics, and for graduates taking preparatory courses in aerodynamics before progressing to more advanced study.
This modern text presents aerodynamic design of aircraft with realistic applications, using CFD software and guidance on its use. Tutorials, exercises, and mini-projects provided involve design of real aircraft, ranging from straight to swept to slender wings, from low speed to supersonic. Supported by online resources and supplements, this toolkit covers topics such as shape optimization to minimize drag and collaborative designing. Prepares seniors and first-year graduate students for design and analysis tasks in aerospace companies. In addition, it is a valuable resource for practicing engineers, aircraft designers, and entrepreneurial consultants.
Based on class-tested material, this concise yet comprehensive treatment of the fundamentals of solid mechanics is ideal for those taking single-semester courses on the subject. It provides interdisciplinary coverage of the key topics, combining solid mechanics with structural design applications, mechanical behavior of materials, and the finite element method. Part I covers basic theory, including the analysis of stress and strain, Hooke's law, and the formulation of boundary-value problems in Cartesian and cylindrical coordinates. Part II covers applications, from solving boundary-value problems, to energy methods and failure criteria, two-dimensional plane stress and strain problems, antiplane shear, contact problems, and much more. With a wealth of solved examples, assigned exercises, and 130 homework problems, and a solutions manual available online, this is ideal for senior undergraduates studying solid mechanics, and graduates taking introductory courses in solid mechanics and theory of elasticity, across aerospace, civil and mechanical engineering, and materials science.
First published in 1959, this second edition of a 1952 original forms part of the Cambridge Aeronautical Series. The text provides a detailed discussion regarding control and stability in aircraft, encompassing the broader subject of aircraft dynamics. Information on newer discoveries related to the effects of compressibility of air and the deformation of aircraft structures is included. A table of American and British terms and symbols is also incorporated. This book will be of value to anyone with an interest in aeronautics, aerodynamics and the history of science.
Sir Geoffrey Ingram Taylor (1886 1975) was a physicist, mathematician and expert on fluid dynamics and wave theory. He is widely considered to be one of the greatest physical scientists of the twentieth century. Across these four volumes, published between the years 1958 and 1971, Batchelor has collected together almost 200 of Sir Geoffrey Ingram Taylor's papers. The papers of the first three volumes are grouped approximately by subject, with Volume IV collating a number of miscellaneous papers on the mechanics of fluids. Together, these volumes allow a thorough exploration of the breadth and diversity of Sir Taylor's interests within the field of fluid dynamics. At the end of Volume IV, Batchelor provides the reader with both a chronological list of the papers presented across all four volumes, and a list of Sir Geoffrey Taylor's other published articles, completing this truly invaluable research and reference work.
Volume XII of the High Speed Aerodynamics and Jet Propulsion series. Partial Contents: Historical development of jet propulsion; basic principles of jet propulsion; analyses of the various types of jet propulsion engines including the turbojet, the turboprop, the ramjet, and intermittent jets, as well as solid and liquid propellant rocket engines and the ramrocket. Another section deals with jet driven rotors. The final sections discuss the use of atomic energy in jet propulsion and the future prospects of jet propulsion. Originally published in 1959. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
The purpose of this book is to present the basic elements of numerical methods for compressible flows. It is appropriate for advanced undergraduate and graduate students and specialists working in high speed flows. The focus is on the unsteady one-dimensional Euler equations which form the basis for numerical algorithms in compressible fluid mechanics. The book is restricted to the basic concepts of finite volume methods, and even in this regard is not intended to be exhaustive in its treatment. Although the practical applications of the one-dimensional Euler equations are limited, virtually all numerical algorithms for inviscid compressible flow in two and three dimensions owe their origin to techniques developed in the context of the one-dimensional Euler equations. The author believes it is therefore essential to understand the development and implementation of these algorithms in their original one-dimensional context. The text is supplemented by numerous end-of-chapter exercises.
An overview of the physics, concepts, theories, and models underlying the discipline of aerodynamics. This book offers a general overview of the physics, concepts, theories, and models underlying the discipline of aerodynamics. A particular focus is the technique of velocity field representation and modeling via source and vorticity fields and via their sheet, filament, or point-singularity idealizations. These models provide an intuitive feel for aerodynamic flow-field behavior and are the basis of aerodynamic force analysis, drag decomposition, flow interference estimation, and other important applications. The models are applied to both low speed and high speed flows. Viscous flows are also covered, with a focus on understanding boundary layer behavior and its influence on aerodynamic flows. The book covers some topics in depth while offering introductions and summaries of others. Computational methods are indispensable for the practicing aerodynamicist, and the book covers several computational methods in detail, with a focus on vortex lattice and panel methods. The goal is to improve understanding of the physical models that underlie such methods. The book also covers the aerodynamic models that describe the forces and moments on maneuvering aircraft, and provides a good introduction to the concepts and methods used in flight dynamics. It also offers an introduction to unsteady flows and to the subject of wind tunnel measurements. The book is based on the MIT graduate-level course "Flight Vehicle Aerodynamics" and has been developed for use not only in conventional classrooms but also in a massive open online course (or MOOC) offered on the pioneering MOOC platform edX. It will also serve as a valuable reference for professionals in the field. The text assumes that the reader is well versed in basic physics and vector calculus, has had some exposure to basic fluid dynamics and aerodynamics, and is somewhat familiar with aerodynamics and aeronautics terminology.
Principles of Nuclear Rocket Propulsion, Second Edition continues to put the technical and theoretical aspects of nuclear rocket propulsion into a clear and unified presentation, providing an understanding of the physical principles underlying the design and operation of nuclear fission-based rocket engines. This new edition expands on existing material and adds new topics, such as antimatter propulsion, a description of a liquid core-based nuclear rocket engine, nuclear rocket startup, new fuel forms, reactor stability, and new advanced reactor concepts. This new edition is for aerospace and nuclear engineers and advanced students interested in nuclear rocket propulsion.
From the early machines to today's sophisticated aircraft, stability and control have always been crucial considerations. In this second edition, Abzug and Larrabee again forge through the history of aviation technologies to present an informal history of the personalities and the events, the art and the science of airplane stability and control. The book includes never-before-available impressions of those active in the field, from pre-Wright brothers airplane and glider builders through to contemporary aircraft designers. Arranged thematically, the book deals with early developments, research centers, the effects of power on stability and control, the discovery of inertial coupling, the challenge of stealth aerodynamics, a look toward the future, and much more. It is profusely illustrated with photographs and figures, and includes brief biographies of noted stability and control figures along with a core bibliography. Professionals, students, and aviation enthusiasts alike will appreciate this readable history of airplane stability and control.
This book describes the principles and equations required for evaluating the performance of an aircraft. After introductory chapters on the atmosphere, basic flight theory, and drag, the book goes on to consider in detail the estimation of climbing performance, the relevant characteristics of power plants, takeoff and landing performance, range, and turning performance.
This text, written at a level accessible to advanced undergraduate and beginning graduate students, covers all aspects of flight performance of modern day high-performance aircraft, from take-off to landing, through different phases of flight in climb, cruise, turning and descent. The book begins with an introduction to equations of motion, aerodynamic forces, and propulsion systems and then goes on to apply what has been learned to performance during descent and glide, cruising, climb, turning and take-off and landing. A final chapter discusses the performance of hypervelocity re-entry vehicles. Challenging exercises are included at the ends of chapters. These are designed to give readers a deeper understanding of the material covered in the text. This text will serve as an introductory text for advanced undergraduates and beginning graduate students. It will also be of value to researchers in universities and industry. The author is an internationally recognised teacher and researcher in this subject and has received the Excellence in Teaching and Excellence in Research Awards from the College of Engineering at the University of Michigan.
The origin of "Aerodynamic Design of Transport Aircraft" stems from the time when the author was appointed part-time professor in the Aerospace Faculty of Delft University of Technology. At that time, his main activities were those of leading the departments of Aerodynamics, Performance and Preliminary Design at Fokker Aircraft Company. The groundwork for this book started in 1987 as a series of lecture notes consisting mainly of pictorial material with a minimum of English explanatory text. After the demise of Fokker in 1996 one feared that interest in aeronautical engineering would strongly diminish. As a result of this, the course was discontinued and the relationship between the author and the faculty came to an end. Two years later the situation was re-appraised, and the interest in aeronautical engineering remained, so the course was reinstated with a former Fokker colleague Ronald Slingerland as lecturer. The lecture notes from these courses form the foundation of this publication.
Volume IV of the High Speed Aerodynamics and Jet Propulsion series. Contents of this volume include: Introduction, by F.K. Moore; Laminar Flow Theory, by P.A. Lagerstrom; Three-Dimensional Laminar Boundary Layers, by A. Mager; Theory of Time-Dependent Laminar Flows, by Nicholas Rott; Hypersonic Boundary Layer Theory, by F.K. Moore; Laminar Flows with Body Forces, by Simon Ostrach; Stability of Laminar Flows, by S.F. Shen. Originally published in 1964. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Volume VI of the High Speed Aerodynamics and Jet Propulsion series. This volume includes: physical and mathematical aspects of high speed flows; small perturbation theory; supersonic and transonic small perturbation theory; higher order approximations; nonlinear subsonic and transonic flow theory; nonlinear supersonic steady-flow theory; characteristic methods; flows with shock waves. Originally published in 1954. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
It is our pleasure to present these proceedings for "The Aerodynamics of Heavy Vehicles II: Trucks, Buses and Trains" International Conference held in Lake - hoe, California, August 26-31, 2007 by Engineering Conferences International (ECI). Brought together were the world's leading scientists and engineers from industry, universities, and research laboratories, including truck and high-speed train manufacturers and operators. All were gathered to discuss computer simu- tion and experimental techniques to be applied for the design of the more efficient trucks, buses and high-speed trains required in future years. This was the second conference in the series. The focus of the first conference in 2002 was the interplay between computations and experiment in minimizing ae- dynamic drag. The present proceedings, from the 2007 conference, address the development and application of advanced aerodynamic simulation and experim- tal methods for state-of-the-art analysis and design, as well as the development of new ideas and trends holding promise for the coming 10-year time span. Also - cluded, are studies of heavy vehicle aerodynamic tractor and trailer add-on - vices, studies of schemes to delay undesirable flow separation, and studies of - derhood thermal management.
Volume X of the High Speed Aerodynamics and Jet Propulsion series. Contents include: Theory of Two-Dimensional Flow through Cascades; Three-Dimensional Flow in Turbomachines; Experimental Techniques; Flow in Cascades; The Axial Compressor Stage; The Supersonic Compressor; Aerodynamic Design of Axial Flow Turbines; The Radial Turbine; The Centrifugal Compressor; Intermittent Flow Effects. Originally published in 1964. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This undergraduate textbook offers a unique introduction to steady flight and performance for fixed-wing aircraft from a twenty-first-century flight systems perspective. Emphasizing the interplay between mathematics and engineering, it fully explains the fundamentals of aircraft flight and develops the basic algebraic equations needed to obtain the conditions for gliding flight, level flight, climbing and descending flight, and turning flight. It covers every aspect of flight performance, including maximum and minimum air speed, maximum climb rate, minimum turn radius, flight ceiling, maximum range, and maximum endurance. "Steady Aircraft Flight and Performance" features in-depth case studies of an executive jet and a general aviation propeller-driven aircraft, and uses MATLAB to compute and illustrate numerous flight performance measures and flight envelopes for each. Requiring only sophomore-level calculus and physics, it also includes a section on translational flight dynamics that makes a clear connection between steady flight and flight dynamics, thereby providing a bridge to further study.Offers the best introduction to steady aircraft flight and performance Provides a comprehensive treatment of the full range of steady flight conditions Covers steady flight performance and flight envelopes, including maximum and minimum air speed, maximum climb rate, minimum turn radius, and flight ceiling Uses mathematics and engineering to explain aircraft flight Features case studies of actual aircraft, illustrated using MATLAB Seamlessly bridges steady flight and translational flight dynamics
Low-speed aerodynamics is important in the design and operation of aircraft flying at low Mach number, and ground and marine vehicles. This text offers a modern treatment of both the theory of inviscid, incompressible, and irrotational aerodynamics, and the computational techniques now available to solve complex problems. A unique feature is that the computational approach--from a single vortex element to a three-dimensional panel formulation--is interwoven throughout. This second edition features a new chapter on the laminar boundary layer (emphasis on the viscous-inviscid coupling), the latest versions of computational techniques, and additional coverage of interaction problems. The authors include a systematic treatment of two-dimensional panel methods and a detailed presentation of computational techniques for three-dimensional and unsteady flows.
An investigation into how machines and living creatures fly, and of the similarities between butterflies and Boeings, paper airplanes and plovers. From the smallest gnat to the largest aircraft, all things that fly obey the same aerodynamic principles. In The Simple Science of Flight, Henk Tennekes investigates just how machines and creatures fly: what size wings they need, how much energy is required for their journeys, how they cross deserts and oceans, how they take off, climb, and soar. Fascinated by the similarities between nature and technology, Tennekes offers an introduction to flight that teaches by association. Swans and Boeings differ in numerous ways, but they follow the same aerodynamic principles. Biological evolution and its technical counterpart exhibit exciting parallels. What makes some airplanes successful and others misfits? Why does the Boeing 747 endure but the Concorde now seem a fluke? Tennekes explains the science of flight through comparisons, examples, equations, and anecdotes. The new edition of this popular book has been thoroughly revised and much expanded. Highlights of the new material include a description of the incredible performance of bar-tailed godwits (7,000 miles nonstop from Alaska to New Zealand), an analysis of the convergence of modern jetliners (from both Boeing and Airbus), a discussion of the metabolization of energy featuring Lance Armstrong, a novel treatment of the aerodynamics of drag and trailing vortices, and an emphasis throughout on evolution, in nature and in engineering. Tennekes draws on new evidence on bird migration, new wind-tunnel studies, and data on new airliners. And his analysis of the relative efficiency of planes, trains, and automobiles is newly relevant. (On a cost-per-seat scale, a 747 is more efficient than a passenger car.)
Volume VII of the High Speed Aerodynamics and Jet Propulsion series. It deals with applications to specific components of the complete aircraft. Sections of the volume include: aerodynamics of wings at high speed, aerodynamics of bodies at high speed, interaction problems, propellers at high speed, diffusers and nozzles, and nonsteady wing characteristics. Originally published in 1957. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905. |
![]() ![]() You may like...
Hypersonic Vehicles - Applications…
Giuseppe Pezzella, Antonio Viviani
Hardcover
R3,508
Discovery Miles 35 080
|