![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Alternative & renewable energy sources & technology
This thesis presents a combination of material synthesis and characterization with process modeling. In it, the CO2 adsorption properties of hydrotalcites are enhanced through the production of novel supported hybrids (carbon nanotubes and graphene oxide) and the promotion with alkali metals. Hydrogen is regarded as a sustainable energy carrier, since the end users produce no carbon emissions. However, given that most of the hydrogen produced worldwide comes from fossil fuels, its potential as a carbon-free alternative depends on the ability to capture the carbon dioxide released during manufacture. Sorption-enhanced hydrogen production, in which CO2 is removed as it is formed, can make a major contribution to achieving this. The challenge is to find solid adsorbents with sufficient CO2 capacity that can work in the right temperature window over repeated adsorption-desorption cycles. The book presents a highly detailed characterization of the materials, together with an accurate measurement of their adsorption properties under dry conditions and in the presence of steam. It demonstrates that even small quantities of graphene oxide provide superior thermal stability to hydrotalcites due to their compatible layered structure, making them well suited as volume-efficient adsorbents for CO2. Lastly, it identifies suitable catalysts for the overall sorption-enhanced water gas shift process.
This book provides advanced analytics and decision management techniques and tools for developing sustainable competitive advantages in the studied target context. In order to achieve sustainable economy, the capacity to endure, it is essential to understand and study the mechanisms for interactions and impact from and among these perspectives.
"Transformation and Utilization of Carbon Dioxide"shows the various organic, polymeric and inorganic compounds which result from the transformation of carbon dioxide through chemical, photocatalytic, electrochemical, inorganic and biological processes. The book consists of twelve chapters demonstrating interesting examples of these reactions, depending on the types of reaction and catalyst. It also includes two chapters dealing with the utilization of carbon dioxide as a reaction promoter and presents a wide range of examples of chemistry and chemical engineering with carbon dioxide. "Transformation and Utilization of Carbon Dioxide"is a collective work of reviews illustrative of recent advances in the transformation and utilization of carbon dioxide. This book is interesting and useful to a wide readership in the various fields of chemical science and engineering. Bhalchandra Bhanage is a professor of industrial and engineering chemistry at Institute of Chemical Technology, India. Masahiko Arai is a professor of chemical engineering at Hokkaido University, Japan."
There are many wave and tidal devices under development but as yet very few are actually in revenue earning production. However the engineering problems are gradually being solved and there is an appetite to invest in these renewable generation technologies for harsher environments. To some extent the wave and tidal generation industry is following in the wake of the wind industry, particularly learning from the growing experience of offshore wind farm deployment. This book combines wind industry lessons with wave and tidal field knowledge to explore the main reliability and availability issues facing this growing industry. Topics covered include an overview of wave and tidal development; resource; reliability theory relevant to wave and tidal devices; reliability prediction method for wave and tidal devices; practical wave and tidal device reliability; effects of MEC device taxonomy on reliability; availability and its effect on the cost of marine energy; wave and tidal device layout and grid connection; design and testing for wave and tidal devices; operational experience and lessons learnt; monitoring and its effect on operations and maintenance; and overall conclusions. Wave and Tidal Generation Devices: Reliability and availability is essential reading for wave and tidal engineers and researchers and students of renewable energy.
The latest scientific knowledge on climate change indicates that higher greenhouse gas concentrations in the atmosphere through unchecked emissions will provoke severe climate change and ocean acidification. Both impacts can fundamentally alter environmental structures on which humanity relies and have serious consequences for the food chain among others. Climate change therefore poses major socio-economic, technical and environmental challenges which will have serious impacts on countries' pathways towards sustainable development. As a result, climate change and sustainable development have increasingly become interlinked. A changing climate makes achieving Millennium Development Goals more difficult and expensive, so there is every reason to achieve development goals with low greenhouse gas emissions. This leads to the following five challenges discussed by Challenges and Solutions for Climate Change: 1. To place climate negotiations in the wider context of sustainability, equity and social change so that development benefits can be maximised at the same time as decreasing greenhouse gas emissions. 2. To select technologies or measures for climate change mitigation and adaptation based on countries' sustainable development and climate goals. 3. To create low greenhouse gas emission and climate resilient strategies and action plans in order to accelerate innovation needed for achieving sustainable development and climate goals on the scale and timescale required within countries. 4. To rationalize the current directions in international climate policy making in order to provide coherent and efficient support to developing countries in devising and implementing strategies and action plans for low emission technology transfers to deliver climate and sustainable development goals. 5. To facilitate development of an international framework for financial resources in order to support technology development and transfer, improve enabling environments for innovation, address equity issues such as poor people's energy access, and make implementation of activities possible at the desired scale within the country. The solutions presented in Challenges and Solutions for Climate Change show how ambitious measures can be undertaken which are fully in line with domestic interests, both in developing and in developed countries, and how these measures can be supported through the international mechanisms.
This book reports on cutting-edge findings regarding harmonic stability assessment for offshore wind power plants (OWPPs). It presents a timely investigation of the harmonic stability interaction between OWPPs on the one hand, and associated control systems in the wind turbines and other power electronic devices in the transmission system on the other. The book particularly focuses on voltage-sourced converter high-voltage direct current (VSC-HVDC) and static compensator (STATCOM) systems. From a practical perspective, the book reports on appropriate models for power electronic devices. It describes how the frequency domain evaluation approach can be assessed by comparing results obtained with the Nyquist stability criterion against the more detailed electromagnetic transient based model realized in the PSCAD/EMTDC simulation program. The book also provides a concise yet complete overview of large OWPPs that incorporate power electronic devices on a broad scale, and highlights selected challenges and opportunities in the context of real-world applications.
This book provides insights on a broad spectrum of renewable and sustainable energy technologies from the world's leading experts. It highlights the latest achievements in policy, research and applications, keeping readers up-to-date on progress in this rapidly advancing field. Detailed studies of technological breakthroughs and optimizations are contextualized with in-depth examinations of experimental and industrial installations, connecting lab innovations to success in the field. The volume contains selected papers presented at technical and plenary sessions at the World Renewable Energy Congress, the world's premier conference on renewable energy and sustainable development. Held every two years, the Congress provides an international forum that attracts hundreds of delegates from more than 60 countries.
Because society depends greatly on electric energy, power system control and protection focuses on ensuring a secure and reliable supply of power. To operate the electric systems in safe mode, the power system component should be equipped with intelligent controllers. The Handbook of Research on Smart Power System Operation and Control is a collection of innovative research on the theoretical and practical developments in smart power system operation and control that takes into account both smart grid and micro-grid systems. While highlighting topics including cybersecurity, smart grid, and wide area monitoring, this book is ideally designed for researchers, students, and industry professionals.
This contributed volume sheds new light on waste management and the production of biofuels. The authors share insights into microbial applications to meet the challenges of environmental pollution and the ever- growing need for renewable energy. They also explain how healthy and balanced ecosystems can be created and maintained using strategies ranging from oil biodegration and detoxification of azo dyes to biofouling. In addition, the book illustrates how the metabolic abilities of microorganisms can be used in microbial fuel-cell technologies or for the production of biohydrogen. It inspires young researchers and experienced scientists in the field of microbiology to explore the application of green biotechnology for bioremediation and the production of energy, which will be one of the central topics for future generations.
Increasing global consumerism and population has led to an increase
in the levels of waste produced. Waste to energy (WTE) conversion
technologies can be employed to convert residual wastes into clean
energy, rather than sending these wastes directly to landfill.
Waste to energy conversion technology explores the systems,
technology and impacts of waste to energy conversion.
Addressing the challenge of improving battery quality while reducing high costs and environmental impacts of the production, this book presents a multiscale simulation approach for battery production systems along with a software environment and an application procedure. Battery systems are among the most important technologies of the 21st century since they are enablers for the market success of electric vehicles and stationary energy storage solutions. However, the performance of batteries so far has limited possible applications. Addressing this challenge requires an interdisciplinary understanding of dynamic cause-effect relationships between processes, equipment, materials, and environmental conditions. The approach in this book supports the integrated evaluation of improvement measures and is usable for different planning horizons. It is applied to an exemplary battery cell production and module assembly in order to demonstrate the effectiveness and potential benefits of the simulation.
Gathering selected, revised and extended contributions from the conference 'Forecasting and Risk Management for Renewable Energy FOREWER', which took place in Paris in June 2017, this book focuses on the applications of statistics to the risk management and forecasting problems arising in the renewable energy industry. The different contributions explore all aspects of the energy production chain: forecasting and probabilistic modelling of renewable resources, including probabilistic forecasting approaches; modelling and forecasting of wind and solar power production; prediction of electricity demand; optimal operation of microgrids involving renewable production; and finally the effect of renewable production on electricity market prices. Written by experts in statistics, probability, risk management, economics and electrical engineering, this multidisciplinary volume will serve as a reference on renewable energy risk management and at the same time as a source of inspiration for statisticians and probabilists aiming to work on energy-related problems.
"Solar Energy Forecasting and Resource Assessment" is a vital text
for solar energy professionals, addressing a critical gap in the
core literature of the field. As major barriers to solar energy
implementation, such as materials cost and low conversion
efficiency, continue to fall, issues of intermittency and
reliability have come to the fore. Scrutiny from solar project
developers and their financiers on the accuracy of long-term
resource projections and grid operators concerns about variable
short-term power generation have made the field of solar
forecasting and resource assessment pivotally important. This
volume provides an authoritative voice on the topic, incorporating
contributions from an internationally recognized group of top
authors from both industry and academia, focused on providing
information from underlying scientific fundamentals to practical
applications and emphasizing the latest technological developments
driving this discipline forward.
This book introduces several simple analytical approaches to aid the seamless integration of renewable distributed generation. It focuses on the idea of intelligent integration, which involves locating and developing suitable operational characteristics of renewable distributed generation. After reviewing the options available, the best location should be chosen, an appropriately sized operation should be installed and the most suitable operational characteristics should be adopted. Presenting these simple analytical approaches, their step-by-step implementation and a number of cases studies using test distribution systems, the book clearly demonstrates the technical, economic and environmental benefits of intelligent integration.
Wind turbine gearboxes present major reliability issues, leading to
great interest in the current development of gearless direct-drive
wind energy systems. Offering high reliability, high efficiency and
low maintenance, developments in these direct-drive systems point
the way to the next generation of wind power, and Electrical drives
for direct drive renewable energy systems is an authoritative guide
to their design, development and operation.
Addressing the sustainable energy crisis in an objective manner, this enlightening book analyzes the relevant numbers and organizes a plan for change on both a personal level and an international scale--for Europe, the United States, and the world. In case study format, this informative reference answers questions surrounding nuclear energy, the potential of sustainable fossil fuels, and the possibilities of sharing renewable power with foreign countries. While underlining the difficulty of minimizing consumption, the tone remains positive as it debunks misinformation and clearly explains the calculations of expenditure per person to encourage people to make individual changes that will benefit the world at large. If you've thrown your hands up in despair thinking no solution is possible, then read this book - it's an honest, realistic, and humorous discussion of all our energy options.
Are you developing strategies for a future sustainable energy supply? Are you designing policies to deploy renewable energy technologies in your country? Are you looking for new tools and measures to make your policies more effective? Are you planning to make decisions on renewable energy investments in certain countries and are you checking their policy robustness? Let the IEA guide you into successful, efficient and effective policies and decisions for accelerating deployment of renewable energy. Learn about the six policy actions that are essential ingredients for your policy portfolio: Alliance Building Communicating Target SettingIntegration in economic policies Optimizing existing instruments and Neutralizing disadvantages on the playing field This book shows why and how successful renewable energy
strategies work. Many recent and actual examples of best cases and
experiences in policies--based on literature and interviews--show
how policies can best mobilize national and international renewable
energy business and the financial institutions, while creating
broad support. The book is an initiative of the IEA-RETD, an
international agreement between nine countries to investigate and
accelerate the deployment of renewable energy deployment.
Bioenergy is coming to be seen as a priority on the international agenda, with the use of liquid biofuels a key strategy in the attempt to meet both the demand for environmental sustainability and the energy needs of countries. The growth in the production and use of biofuels around the world has led to increased interest and discussion about this subject. Given the dynamics of this phenomenon, the organizers of this book, based on more than 10 years experience of joint research on this subject, seek to address key issues relating to the production and marketing of liquid biofuels using the Brazilian experience with ethanol and biodiesel as an illustrative case, as well as the experiences of the leading producers and consumers of biofuels. The topics to be covered in this book include the role of public policies in fostering the emergence of the biofuels industry, the main socio-economic, environmental, technological aspects and the prospects for the sector. The conceptual and methodological bases that provide analytical support to the book are based on recent research published in indexed journals. The structure and content of the book seek to address some central issues regarding: How the biofuel industries have emerged and developed in different countries? What factors have been crucial to the success or failure of different production initiatives? What are the main socio-economic-environmental impacts of the production and consumption of liquid biofuels? How are national and international markets for liquid biofuels being structured? To what extent and/or in what conditions can the experiences and lessons learned at the national level be transferred and adapted in other countries? Finally, based on the scenarios, the prospects for liquid biofuels will be discussed.
Taking eleven countries in Europe, Canada, South Africa, America, Latin America and Australia, this book discusses recurring barriers to cluster development in the renewable energy sector. The authors look at the real-world dynamics and tensions between stakeholders on the ground, with a particular focus on the relationships between SMEs and other actors. This trans-regional study is unique in its scale and scope, drawing on a decade of field research to show how by learning from the successes and failures of other clusters, costs and risk can be reduced. The book fills a significant gap in the literature for policymakers, managers and economic developers in a key market.
This thesis describes a series of investigations designed to assess the value of metalloenzymes in systems for artificial and adapted photosynthesis. The research presented explores the interplay between inherent enzyme properties such as structure, rates and thermodynamics, and the properties of the semiconducting materials to which the enzyme is attached. Author, Andreas Bachmeier provides a comprehensive introduction to the interdisciplinary field of artificial photosynthesis, allowing the reader to grasp the latest approaches being investigated, from molecular systems to heterogeneous surface catalysis. Bachmeier's work also uses metalloenzymes to highlight the importance of reversible catalysts in removing the burden of poor electrocatalytic rates and efficiencies which are common characteristics for most artificial photosynthesis systems. Overall, this thesis provides newcomers and students in the field with evidence that metalloenzymes can be used to establish new directions in artificial photosynthesis research.
This book explores the use of recent advanced multiple stage conversion technologies. These applications combine conventional fluidised bed systems with new plasma technologies to efficiently generate different energy outputs from waste materials with minimum cleaning effort. Using a mix of modelling and experimental approaches, the author provides fundamental insights into how the key operating variables of the two-stage process may impact the final quality of syngas. This thesis serves as a useful reference guide on the modelling and design of single and multiple-stage systems for thermal waste treatment. Its extended section on plant configuration and operation of waste gasification plants identifies the main technical challenges, and is of use to researchers entering the field.
With pressure increasing to utilise wastes and residues effectively
and sustainably, the production of biogas represents one of the
most important routes towards reaching national and international
renewable energy targets. The biogas handbook: Science, production
and applications provides a comprehensive and systematic guide to
the development and deployment of biogas supply chains and
technology.
This book presents a range of nanocatalysts, together with their primary environmental applications and use in chemical production processes. In addition, it describes the nanomaterials used for catalysts and details their performance. The book introduces readers to the fundamentals and applications of nanocatalysis, synthesis, characterization, modification and application. Further topics include: landfill organic pollutant photodegradation; magnetic photocatalysis; synergistic effects on hydrogenated TiO2; and photoinduced fusion of gold-semiconductor nanoparticles. A detailed explanation of the chemistry of nanostructures and the ability to control materials at the nano-scale rounds out the coverage. Given the central importance of research in nanotechnology and nanoscience for the development of new catalysts, the book offers a valuable source of information for researchers and academics alike. It will also benefit industrial engineers and production managers who wish to understand the environmental impact of nanocatalysts.
|
You may like...
Hybrid-Renewable Energy Systems in…
Hina Fathima, Prabaharan N, …
Paperback
Clean Energy and Resources Recovery…
Vinay Kumar Tyagi, Kaoutar Aboudi
Paperback
R3,581
Discovery Miles 35 810
Materials for Sustainable Energy, Volume…
Rudi van Eldik, Wojciech Macyk
Hardcover
R5,887
Discovery Miles 58 870
Emerging Nanotechnologies in…
Lide M. Rodriguez-Martinez, Noshin Omar
Hardcover
R3,206
Discovery Miles 32 060
Renewable Energy - Physics, Engineering…
Bent Sorensen (Sorensen)
Hardcover
R2,329
Discovery Miles 23 290
Green Composites - Waste and…
Caroline Baillie, Randika Jayasinghe
Hardcover
R4,665
Discovery Miles 46 650
Handbook of Biofuels Production…
Rafael Luque, Carol Sze Ki Lin, …
Paperback
R6,671
Discovery Miles 66 710
Algae Based Bioelectrochemical Systems…
Durga Madhab Mahapatra, Lakhveer Singh, …
Paperback
R3,506
Discovery Miles 35 060
|