![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Alternative & renewable energy sources & technology
Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen examines the current advances in biomass conversion technologies for biofuels and biohydrogen production, including their advantages and challenges for real-world application and industrial-scale implementation. In its first part, the book explores the use of lignocellulosic biomass and agricultural wastes as feedstock, also addressing biomass conversion into biofuels, such as bioethanol, biodiesel, bio-methane, and bio-gasoline. The chapters in Part II cover several different pathways for hydrogen production, from biomass, including bioethanol and bio-methane reforming and syngas conversion. They also include a comparison between the most recent conversion technologies and conventional approaches for hydrogen production. Part III presents the status of advanced bioenergy technologies, such as applications of nanotechnology and the use of bio-alcohol in low-temperature fuel cells. The role of advanced bioenergy in a future bioeconomy and the integration of these technologies into existing systems are also discussed, providing a comprehensive, application-oriented overview that is ideal for engineering professionals, researchers, and graduate students involved in bioenergy.
Theoretical and Applied Aspects of Biomass Torrefaction: For Biofuels and Value-Added Products presents a firm foundation of torrefaction technologies and their economic and sustainability aspects. It offers a theoretical background in the underlying principles of torrefaction reactions, including thermodynamics, chemical reactions, process modeling, end-products, and value-added products such as biochar and torr-gas. It also provides an overview of best practices in torrefaction systems, reactor design and scale-up, and compares torrefaction with other thermochemical processing technologies. The authors discuss feedstock availability for a variety of biomass types, such as agricultural residues, woody residues, energy crops and municipal solid waste. They also examine logistics and markets for torrefied products, which includes their use in co-firing and combined heat and power generation, as well as emissions and other environmental aspects. This balanced and thorough approach to the subject matter makes this an excellent resource for engineers, researchers, and graduate students in the field of biomass conversion, especially with background in energy engineering, mechanical engineering, chemical engineering, environmental engineering, biological engineering, and agriculture.
Renewable Energy Forecasting: From Models to Applications provides an overview of the state-of-the-art of renewable energy forecasting technology and its applications. After an introduction to the principles of meteorology and renewable energy generation, groups of chapters address forecasting models, very short-term forecasting, forecasting of extremes, and longer term forecasting. The final part of the book focuses on important applications of forecasting for power system management and in energy markets. Due to shrinking fossil fuel reserves and concerns about climate change, renewable energy holds an increasing share of the energy mix. Solar, wind, wave, and hydro energy are dependent on highly variable weather conditions, so their increased penetration will lead to strong fluctuations in the power injected into the electricity grid, which needs to be managed. Reliable, high quality forecasts of renewable power generation are therefore essential for the smooth integration of large amounts of solar, wind, wave, and hydropower into the grid as well as for the profitability and effectiveness of such renewable energy projects.
This important book lays bare the dangers of global warming caused by carbon dioxide emissions stemming from fossil fuel use, and proposes pathways toward mitigation. A discussion of the current main uses of fossil fuels acts as a basis for presenting viable, economically sound alternatives. The author outlines a clear, practical strategy for establishing a carbon-free future by deploying proven policy structures and technologies that are already commercially available.
This volume is a comprehensive guide to the use of geographic information systems (GIS) for the spatial analysis of supply and demand for energy in the global and local scale. It gathers the latest research and techniques in GIS for spatial and temporal analysis of energy systems, mapping of energy from fossil fuels, optimization of renewable energy sources, optimized deployment of existing power sources, and assessment of environmental impact of all of the above. Author Lubos Matejicek covers GIS for assessment a wide variety of energy sources, including fossil fuels, hydropower, wind power, solar energy, biomass energy, and nuclear power as well as the use of batteries and accumulators. The author also utilizes case studies to illustrate advanced techniques such as multicriteria analysis, environmental modeling for prediction of energy consumption, and the use of mobile computing and multimedia tools.
This book presents a systems approach to bioenergy and provides a means to capture the complexity of bioenergy issues, including both direct and indirect impacts across the energy economy. The book addresses critical topics such as systems thinking; sustainability, biomass; feedstocks of importance and relevance (that are not competing with the food market); anaerobic digestion and biogas; biopower and bioheat; and policies, economy, and rights to access to clean energy. This is a contributed volume with each chapter written by relevant experts in the respective fields of research and teaching. Each chapter includes a review with highlights of the key points, critical-thinking questions, and a glossary.This book can be used as a primary or secondary textbook in courses related to bioenergy and bioproducts and sustainable biofuels. It is suitable for advanced undergraduate and graduate students. Researchers, professionals, and policy makers will also be able to use this book for current reference materials.
This book is the first of its kind to comprehensively describe the principles of demand response. This allows consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage in response to the grid reliability need, time-based rates or other forms of financial incentives. The main contents of the book include modeling of demand response resources, incentive design, scheduling and dispatch algorithms, and impacts on grid operation and planning. Through case studies and illustrative examples, the authors highlight and compare the advantages, disadvantages and benefits that demand response can have on grid operations and electricity market efficiency. First book of its kind to introduce the principles of demand response; Combines theory with real-world applications useful for both professionals and academic researchers; Covers demand response in the context of power system applications.
Algal Green Chemistry: Recent Progress in Biotechnology presents emerging information on green algal technology for the production of diverse chemicals, metabolites, and other products of commercial value. This book describes and emphasizes the emerging information on green algal technology, with a special emphasis on the production of diverse chemicals, metabolites, and products from algae and cyanobacteria. Topics featured in the book are exceedingly valuable for researchers and scientists in the field of algal green chemistry, with many not covered in current academic studies. It is a unique source of information for scientists, researchers, and biotechnologists who are looking for the development of new technologies in bioremediation, eco-friendly and alternative biofuels, biofertilizers, biogenic biocides, bioplastics, cosmeceuticals, sunscreens, antibiotics, anti-aging, and an array of other biotechnologically important chemicals for human life and their contiguous environment. This book is a great asset for students, researchers, and biotechnologists.
This book provides a comprehensive overview on the latest developments in the control, operation, and protection of microgrids. It provides readers with a solid approach to analyzing and understanding the salient features of modern control and operation management techniques applied to these systems, and presents practical methods with examples and case studies from actual and modeled microgrids. The book also discusses emerging concepts, key drivers and new players in microgrids, and local energy markets while addressing various aspects from day-ahead scheduling to real-time testing of microgrids. The book will be a valuable resource for researchers who are focused on control concepts, AC, DC, and AC/DC microgrids, as well as those working in the related areas of energy engineering, operations research and its applications to energy systems. Presents modern operation, control and protection techniques with applications to real world and emulated microgrids; Discusses emerging concepts, key drivers and new players in microgrids and local energy markets; Addresses various aspects from day-ahead scheduling to real-time testing of microgrids.
This volume addresses renewable energy communities, and in particular renewable energy cooperatives (REScoops), in the context of the revised EU Renewables Directive. It provides a comprehensive account of the history and development of the renewable energy community movement in over six different countries of continental Europe. It addresses their visions, strategy, organisation, agency, and more particularly the challenges they encounter. This is of particular importance to gain more understanding into how renewable energy communities fare in domestic energy markets where they are confronted with regime institutions, structures and incumbents' agency that tend to favour maintaining of the status quo while blocking attempts to empower and institutionalise renewable energy communities as market entrants having a disruptive, radical green and localist agenda. This volume will be an invaluable reference for academics and practitioners with an interest in social innovation in sustainable transitions, the role of community energy in energy markets, their agency, as well as an outlook to the impact that the EU Renewables Directive may have to change national legislation and policy frameworks to create a level playing field that is essentially more fair and beneficial to renewable energy communities.
The Power Grid: Smart, Secure, Green and Reliable offers a diverse look at the traditional engineering and physics aspects of power systems, also examining the issues affecting clean power generation, power distribution, and the new security issues that could potentially affect the availability and reliability of the grid. The book looks at growth in new loads that are consuming over 1% of all the electrical power produced, and how combining those load issues of getting power to the regions experiencing growth in energy demand can be addressed. In addition, it considers the policy issues surrounding transmission line approval by regulators. With truly multidisciplinary content, including failure analysis of various systems, photovoltaic, wind power, quality issues with clean power, high-voltage DC transmission, electromagnetic radiation, electromagnetic interference, privacy concerns, and data security, this reference is relevant to anyone interested in the broad area of power grid stability.
People scratching a living from parched land, women walking miles for scraps of firewood are both familiar images of Africa. But, in many places, people, with the help of governments and aid agencies, are putting the land into good shape, growing more food and creating a healthy cover of trees. This book joins the literature of hope by looking at these advances from the viewpoint of the energy crisis of the poor. This crisis can only be solved by going beyond the narrow confines of energy to consider all the needs of local people and the potential for change. Drawing on a wide range of case histories, the authors describe the gains in farming and forestry and woodfuel supply that have come about through this broader, people-centered approach. They also write about woodfuel prices, markets and other key elements of survival strategies for the cities. Huge efforts will be needed to recover from the failures of the past, but Leach and Mearns show that important lessons are at last being learned and that new roads to success can be mapped. Originally published in 1988
Green Composites: Waste-based Materials for a Sustainable Future, Second Edition presents exciting new developments on waste-based composites. New, additional, or replacement chapters focus on these elements, reflecting on developments over the past ten years. Authors of existing chapters have brought these themes into their work wherever possible, and case study chapters that connect materials engineering to the topic's social context are included in this revised edition. Professor Baillie believes that the new 'green' is the "what and who" composites are being designed for, "what" material needs we have, and "what" access different groups have to the technical knowledge required, etc. Industry is now showing concerns for corporate social responsibility and social impact. Recent conversations with prestigious materials institutions have indicated a growing interest in moving into areas of research that relate their work to beneficial social impacts. The book's example of Waste for Life demonstrates the genre proposed for the case study chapters. Waste for Life adopts scientific knowledge and low-threshold/high-impact technologies.
Emerging Nanotechnologies in Rechargeable Energy Storage Systems addresses the technical state-of-the-art of nanotechnology for rechargeable energy storage systems. Materials characterization and device-modeling aspects are covered in detail, with additional sections devoted to the application of nanotechnology in batteries for electrical vehicles. In the later part of the book, safety and regulatory issues are thoroughly discussed. Users will find a valuable source of information on the latest developments in nanotechnology in rechargeable energy storage systems. This book will be of great use to researchers and graduate students in the fields of nanotechnology, electrical energy storage, and those interested in materials and electrochemical cell development.
Against the backdrop of rapid advances in the energy sector, this book provides a concise overview of the complex challenges in the energy paradigm today, which revolve around the seemingly unsolvable energy equation. The author, an experienced energy professional, combines the various aspects of the energy transition into a single perspective. While highlighting a number of salient problems, he also explores grounds for optimism that these challenges can and will be met. After establishing the historical context, the book presents an analysis of today's energy industry, different energy sources, countries and determinants of energy demand, supplementing all sections with a wealth of global and local data. It subsequently proposes measures to solve the energy equation and a roadmap for a sustainable future, based on more efficient energy use, cleaner energy production and advanced technologies.
This book explores key parameters, properties and fundamental concepts of electrocatalysis. It also discusses the engineering strategies, current applications in fuel-cells, water-splitting, metal-ion batteries, and fuel generation. This book elucidates entire category viewpoints together with industrial applications. Therefore, all the sections of this book emphasize the recent advances of different types of electrocatalysts, current challenges, and state-of-the-art studies through detailed reviews. This book is the result of commitments by numerous experts in the field from various backgrounds and expertise and appeals to industrialists, researchers, scientists and in addition understudies from various teaches.
This book reports on the formulation of a multi-stage optimization framework for the Danish power system, taking into account the real operational cost, the voltage constraints and the uncertainty associated to the forecasting errors of the wind power. It describes in detail the implementation of this framework into a simulation platform and its validation in real-world applications. The book especially focuses on automatic voltage control systems and on methods to handle uncertainty in them. All in all, it provides readers with a comprehensive overview of power system optimization and future trends in power system operation.
This book provides a holistic, interdisciplinary overview of offshore wind energy, and is a must-read for advanced researchers. Topics, from the design and analysis of future turbines, to the decommissioning of wind farms, are covered. The scope of the work ranges from analytical, numerical and experimental advancements in structural and fluid mechanics, to novel developments in risk, safety & reliability engineering for offshore wind.The core objective of the current work is to make offshore wind energy more competitive, by improving the reliability, and operations and maintenance (O&M) strategies of wind turbines. The research was carried out under the auspices of the EU-funded project, MARE-WINT. The project provided a unique opportunity for a group of researchers to work closely together, undergo multidisciplinary doctoral training, and conduct research in the area of offshore wind energy generation. Contributions from expert, external authors are also included, and the complete work seeks to bridge the gap between research and a rapidly-evolving industry.
This book provides a state-of-the-art review of floating offshore wind turbines (FOWT). It offers developers a global perspective on floating offshore wind energy conversion technology, documenting the key challenges and practical solutions that this new industry has found to date. Drawing on a wide network of experts, it reviews the conception, early design stages, load & structural analysis and the construction of FOWT. It also presents and discusses data from pioneering projects. Written by experienced professionals from a mix of academia and industry, the content is both practical and visionary. As one of the first titles dedicated to FOWT, it is a must-have for anyone interested in offshore renewable energy conversion technologies.
This collection focuses on energy efficient technologies including innovative ore beneficiation, smelting technologies, recycling and waste heat recovery. The volume also covers various technological aspects of sustainable energy ecosystems, processes that improve energy efficiency, reduce thermal emissions, and reduce carbon dioxide and other greenhouse emissions. Papers addressing renewable energy resources for metals and materials production, waste heat recovery and other industrial energy efficient technologies, new concepts or devices for energy generation and conversion, energy efficiency improvement in process engineering, sustainability and life cycle assessment of energy systems, as well as the thermodynamics and modeling for sustainable metallurgical processes are included. This volume also offers topics on CO2 sequestration and reduction in greenhouse gas emissions from process engineering, sustainable technologies in extractive metallurgy, as well as the materials processing and manufacturing industries with reduced energy consumption and CO2 emission. Contributions from all areas of non-nuclear and non-traditional energy sources, such as solar, wind, and biomass are also included in this volume.Papers from the following symposia are presented in the book:Energy TechnologiesAdvances in Environmental Technologies: Recycling and Sustainability Joint SessionDeriving Value from Challenging Waste Materials: Recycling and Sustainability Joint SessionSolar Cell Silicon
This book addresses a range of solutions and effective control techniques for Microbial Fuel Cells (MFCs), intended as a response to the increased energy consumption and wastewater production stemming from globalization. It describes the fundamentals of MFCs and control-oriented mathematical models, and provides detailed information on uncertain parameters. Various control techniques like robust control with LMI, adaptive backstepping control, and exact linearization control are developed for different mathematical models. In turn, the book elaborates on the basics of adaptive control, presenting several methods in detail. It also demonstrates how MFCs can be developed at the laboratory level, equipping readers to develop their own MFCs for experimental purposes. In closing, it develops a transfer function model for MFCs by combining a system identification technique and model reference adaptive control techniques. By addressing one of the most promising sources of clean and renewable energy, this book provides a viable solution for meeting the world's increasing energy demands.
This book focuses on the latest emerging technologies in electric vehicles (EV), and their economic and environmental impact. The topics covered include different types of EV such as hybrid electrical vehicle (HEV), battery electrical vehicle (BEV), fuel cell electrical vehicle (FCEV), plug-in hybrid electrical vehicle (PHEV). Theoretical background and practical examples of conventional electrical machines, advanced electrical machines, battery energy sources, on-board charging and off-board charging techniques, and optimization methods are presented here. This book can be useful for students, researchers and practitioners interested in different problems and challenges associated with electric vehicles.
This book delves into various solution paradigms such as artificial neural network, support vector machine, wavelet transforms, evolutionary computing, swarm intelligence. During the last decade, novel solution technologies based on human and species intelligence have gained immense popularity due to their flexible and unconventional approach. New analytical tools are also being developed to handle big data processing and smart decision making. The idea behind compiling this work is to familiarize researchers, academicians, industry persons and students with various applications of intelligent techniques for producing sustainable, cost-effective and robust solutions of frequently encountered complex, real-world problems in engineering and science disciplines. The practical problems in smart grids, communication, waste management, elimination of harmful elements from nature, etc., are identified, and smart and optimal solutions are proposed. |
![]() ![]() You may like...
Action on AIDS - National Policies in…
Barbara Misztal, David Moss
Hardcover
R2,787
Discovery Miles 27 870
Into the Wilds - The Dangerous Truth…
Brent Alan Henderson
Paperback
|