Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Alternative & renewable energy sources & technology
The purpose of this book is to present a range of cases and comparison of the issues, insights and cases emerging from the Sustainable Energy Mix Summit in the Galapagos that offer a better understanding of energy mix in fragile environments from a variety of International locations and contexts including the Galapagos.
This book explores key theoretical and empirical issues related to the development and implementation of planning strategies that can provide guidance on the transition to climate-compatible and low-carbon urban development. It especially focuses on integrating resilience thinking into the urban planning process, and explains how such an integration can contribute to reflecting the dynamic properties of cities and coping with the uncertainties inherent in future climate change projections. Some of the main questions addressed are: What are the innovative methods and processes needed to incorporate resilience thinking into urban planning? What are the characteristics of a resilient urban form and what are the challenges associated with integrating them into urban development? Also, how can the resilience of cities be measured and what are the main constituents of an urban resilience assessment framework? In addition to addressing these crucial questions, the book features several case studies from around the world, investigating methodologies, challenges, and opportunities for mainstreaming climate resilience in the theory and practice of urban planning. Featuring contributions by prominent researchers from around the world, the book offers a valuable resource for students, academics and practitioners alike.
This book highlights the significance of urban agricultural production, the technologies and methods for supplying organic materials to the farmland, recovering plant nutrients and energy in cities, and systems for sustaining farmlands in order to produce agricultural crops and supply safe food to citizens. Focusing on the effective recycling of biomass waste generated in cities for use in organic farming, it discusses alternatives to traditional composting, such as carbonizing organic waste, which not only produces recyclable materials but also converts organic waste into energy. Recycling discarded organic matter appropriately and reusing it as both material and energy is the basis of new urban organic farming, and represents a major challenge for the next generation of urban agriculture. As such, the book presents advanced research findings to facilitate the implementation of safe, organic agricultural production with only a small environmental load.
Chemistry is considered to be one of the prime causes of environmental pollution and degradation. The United Nations General Assembly also addressed the environmental challenges in its Sustainable Development Goals (SDGs), which have been adopted in 2015. A closer look shows that to meet these goals chemistry will play an important role. Green chemistry encompasses design and synthesis of environmentally benign chemical processes, green approaches to minimize and/or remediate environmental pollution, the development of biomaterials, biofuel, and bioenergy production, biocatalysis, and policies and ethics in green chemistry. When products in use today become waste, we need to treat that waste so that hazardous substances are not re-circulated into new products. In this context, circular economy is also an important point of discussion, which focuses on recycling, reuse and use of renewable sources. The theme of the International Conference on "Green Chemistry in Environmental Sustainability & Chemical Education (ICGC-2016) held in Delhi from 17-18 November 2016 was to discuss the emerging green trends in the direction of sustainability and environmental safety. ICGC-2016 consisted of keynote, plenary and invited lectures, panel discussion, contributed oral papers and poster presentations. The conference provided a platform for high school students, undergraduate and postgraduate students, teaching fraternity and young researchers to interact with eminent scientists and academicians from all over the world who shared their valuable views, experience and research on the harmonious methods in chemistry for a sustainable environment. This volume of proceedings from the conference provides an opportunity for readers to engage with a selection of refereed papers that were presented during the ICGC-2016 conference. The overarching goal of this book is to discuss most recent innovations and concerns in green chemistry as well as practical challenges encountered and solutions adopted to remediate a scathed environment into a pristine one. It includes an extensive variety of contributions from participants of ICGC-2016 that demonstrate the importance of multidisciplinary and interdisciplinary approach to problem solving within green chemistry and environmental management. The proceedings is thus a green chemistry monograph resulting from the fruitful deliberations in the conference, which will deeply enhance awareness about our responsibility towards the environment.
This book collects high-quality research papers presented at the International Conference on Computing Applications in Electrical & Electronics Engineering, held at Rajkiya Engineering College, Sonbhadra, India, on August 30-31, 2019. It provides novel contributions in computational intelligence, together with valuable reference material for future research. The topics covered include: big data analytics, IoT and smart infrastructures, machine learning, artificial intelligence and deep learning, crowd sourcing and social intelligence, natural language processing, business intelligence, high-performance computing, wireless, mobile and green communications, ad-hoc, sensor and mesh networks, SDN and network virtualization, cognitive systems, swarm intelligence, human-computer interaction, network and information security, intelligent control, soft computing, networked control systems, renewable energy sources and technologies, biomedical signal processing, pattern recognition and object tracking, and sensor devices and applications.
This book provides a single-source reference for whole life embodied impacts of buildings. The comprehensive and persuasive text, written by over 50 invited experts from across the world, offers an indispensable resource both to newcomers and to established practitioners in the field. Ultimately it provides a persuasive argument as to why embodied impacts are an essential aspect of sustainable built environments. The book is divided into four sections: measurement, including a strong emphasis on uncertainty analysis, as well as offering practical case studies of individual buildings and a comparison of materials; management, focusing in particular on the perspective of designers and contractors; mitigation, which identifies some specific design strategies as well as challenges; and finally global approaches, six chapters which describe in authoritative detail the ways in which the different regions of the world are tackling the issue.
This book presents a state-of-the-art analysis of energy efficiency as applied to mining processes. From ground fragmentation to mineral processing and extractive metallurgy, experts discuss the current state of knowledge and the nagging questions that call for further research. It offers an excellent resource for all mine managers and engineers who want to improve energy efficiency to boost both production efficiency and sustainability. It will also benefit graduate students and experienced researchers looking for a comprehensive review of the current state of knowledge concerning energy efficiency in the minerals industry.
This book discuss the recent advances and future trends of nanoscience in solar energy conversion and storage. This second edition revisits and updates all the previous book chapters, adding the latest advances in the field of Nanoenergy. Four new chapters are included on the principles and fundamentals of artificial photosynthesis using metal transition semiconductors, perovskite solar cells, hydrogen storage and neutralization batteries. More fundamental aspects can be found in this book, increasing the comparison between theory-experimental achievements and latest developments in commercial devices.
This book demonstrates that solar energy, the most abundant and clean renewable energy, can be utilized to drive methane activation and conversion under mild conditions. The book reports that coupling solar energy and thermal energy can significantly enhance methane conversion at mild temperatures using plasmonic nanometal-based catalysts, with a substantial decrease in apparent activation energy of methane conversion. Furthermore, this book, for the first time, reports the direct photocatalytic methane oxidation into liquid oxygenates (methanol and formaldehyde) with only molecular oxygen in pure water at room temperature with high yield and selectivity over nanometals and semiconductors (zinc oxide and titanium dioxide). These findings are a big stride toward methane conversion and inspire researchers to develop strategies for efficient and selective conversion of methane to high-value-added chemicals under mild conditions.
This book discusses advanced technologies for applications in renewable energy and power systems. The topics covered include neural network applications in power electronics, deep learning applications in power systems, design and simulation of multilevel inverters, solid state transformers, neural network applications for fault detection in power electronics, etc. The book also discusses the important role of artificial intelligence in power systems, and machine learning for renewable energy. This book will be of interest to researchers, professionals, and technocrats looking at power systems, power distribution, and grid operations.
This book is a concise reader-friendly introductory guide to understanding renewable energy technologies. By using simplified classroom-tested methods developed while teaching the subject to engineering students, the authors explain in simple language an otherwise complex subject in terms that enable readers to gain a rapid fundamental understanding of renewable energy, including basic principles, the different types, energy storage, grid integration, and economies. This powerful tutorial is a great resource for students, engineers, technicians, analysts, investors, and other busy professionals who need to quickly acquire a solid understanding of the science of renewable energy technology.
This book presents an authoritative and comprehensive overview of the production and use of microalgal biomass and bioproducts for energy generation. It also offers extensive information on engineering approaches to energy production, such as process integration and process intensification in harnessing energy from microalgae. Issues related to the environment, food, chemicals and energy supply pose serious threats to nations' success and stability. The challenge to provide for a rapidly growing global population has made it imperative to find new technological routes to increase the production of consumables while also bearing in mind the biosphere's ability to regenerate resources. Microbial biomass is a bioresource that provides effective solutions to these challenges. Divided into eight parts, the book explores microalgal production systems, life cycle assessment and the bio-economy of biofuels from microalgae, process integration and process intensification applied to microalgal biofuels production. In addition, it discusses the main fuel products obtained from microalgae, summarizing a range of useful energy products derived from algae-based systems, and outlines future developments. Given the book's breadth of coverage and extensive bibliography, it offers an essential resource for researchers and industry professionals working in renewable energy.
The text describes the main features of currently available heat pumps, focusing on system operation and interactions with external heat sources. In fact, before choosing a heat pump, several aspects must be assessed in detail: the actual climate of the installation site, the building's energy requirements, the heating system, the type of operation etc. After discussing the general working principles, the book describes the main components of compression machines - for EHPs, GHPs and CO2 heat pumps. It then addresses absorption heat pumps and provides additional details on the behavior of two-fluid mixtures. The book presents a performance comparison for the different types, helping designers choose the right one for their needs, and discusses the main refrigerants. Notes on helpful additional literature, websites and videos, also concerning relevant European regulations, round out the coverage. This book will be of interest to all engineers and technicians whose work involves heat pumps. It will also benefit students in energy engineering degree programs who want to deepen their understanding of heat pumps.
This book reports on the design, synthesis and characterization of new small molecule electron acceptors for polymer solar cells. Starting with a detailed introduction to the science behind polymer solar cells, the author then goes on to review the challenges and advances made in developing non-fullerene acceptors so far. In the main body of the book, the author describes the design principles and synthetic strategy for a new family of acceptors, including detailed synthetic procedures and molecular modeling data used to predict physical properties. An indepth characterization of the photovoltaic performance, with transient absorption spectroscopy (TAS), photo-induced charge extraction, and grazing incidence X-ray diffraction (GIXRD) is also included, and the author uses this data to relate material properties and device performance. This book provides a useful overview for researchers beginning a project in this or related areas.
This book derives an explicit analytical pattern (or framework) that permits the examination and optimization of biogas production systems. It provides a concise overview of the current status of biogas and biogas coupled agricultural systems in China, and introduces evaluation methods for energy efficiency, environmental emissions, economic performance and sustainability assessment approaches. Based on empirical studies, it also explores future options for the system development by focusing on emissions mitigation, biogas energy efficiency and system sustainability. Systematic methods of life cycle assessment and thermodynamic analysis may provide new angles for biogas system evaluation. The system discussed is not only a biogas producer, but also a biogas-linked ecological agricultural system, which has the potential to broaden the applicable scopes of renewable energy and eco-agricultural management. The comprehensive, in-depth knowledge and experience presented provide new analytical approaches for researchers in relevant fields and shed light on the construction and operation of emerging anaerobic digestion and biogas industries. This book is a valuable resource for researchers focusing on biogas system modeling, project managers and policymakers.
This book offers a revealing picture of the myths and realities of the energy world by one of our most renowned energy experts and managers. At the end of the first decade of the 21st century, the human race finds itself caught in an "energy trap." Carbon-rich fossil fuels—coal, petroleum and natural gas—are firmly entrenched as the dominant sources of our energy and power. Their highly concentrated forms, versatility of use, ease of transport and storage, ready availability, and comparatively low costs combine to give fossil fuels an unassailable competitive advantage over all alternative sources of energy. This economic reality means that fossil fuels will inevitably continue to be the backbone of the global economy for the next quarter of a century, even while the adverse climate and environmental effects of our dependence on fossil fuels hurtle toward global crisis levels. To avert unacceptable environmental consequences, the world must deliberately and incrementally supplant fossil fuels with alternative energy sources, on a schedule that will have them overtake fossil fuels in the world's energy budget by 2035. To achieve this urgent goal without massive economic dislocation and reduction in standards of living, global investment in fossil fuel efficiency will be just as important as the development and massive deployment of alternative energy technologies and delivery systems. In this eagerly awaited sequel to his prize-winning bestseller, The Age of Oil, Leonardo Maugeri, the strategy director of one of the world's biggest energy companies, puts forward a hard-headed, concrete plan in simple everyday language for how to shift the world economy's primary energy dependence from fossil fuels to renewable energies by 2035. Assuming no specialized knowledge, the author walks the reader chapter by chapter through each of the fossil fuels (oil, coal, and natural gas) and each of the alternative energy sources (nuclear, hydroelectric, biofuel, wind, solar, geothermal, and hydrogen). Drawing on the unparalleled data and analysis resources at his command, Maugeri assesses the problems and advantages of each energy source in turn in order to constrain the optimal mix of energy sources that the world should be aiming for in 2035. Critically, he lays out the arduous path for getting from here to there. Maugeri shows that the next 25 years will be a rocky marriage between the old and the new energy paradigms, during which we must dramatically improve the efficiency of our continuing use of fossil fuels, while driving ahead on all fronts to an energy future based on a suite of sustainable energy sources.
This book offers a complete guide to designing Linear Fresnel Reflector Systems for concentrating solar radiation. It includes theoretical analyses, computational tools and mathematical formulae to facilitate the development, design, construction and application of these systems. In addition, the book presents a concise yet thorough treatment of the theory behind these systems, and provides useful and efficient calculation procedures that can be used to model and develop their practical applications. Along with the theoretical analyses provided in the book, the physical background is explained using mathematical formulae, illustrations, graphs and tables. Methods are presented for solving the non-linear mathematical systems that describe a significant variety of cases. In addition, MATLAB codes are supplied (both in the text and online). Consequently, readers interested in applying the methodology presented here will have all the source codes at hand, allowing them to easily expand on them by introducing appropriate modifications for their respective design configuration. Given its scope, the book will be of interest to engineers and researchers, who can use their scientific background to help them develop more energy-efficient Linear Fresnel Reflector systems. It will also appeal to students studying these systems for the first time, as it supplies a comprehensive overview of their theoretical analysis and applications.
This book provides essential information on and case studies in the fields of energy technology, clean energy, energy efficiency, sustainability and the environment relevant to academics, researchers, practicing engineers, technologists and students. The individual chapters present cutting-edge research on key issues and recent developments in thermo-fluid processes, including but not limited to: energy technologies in process industries, applications of thermo-fluid processes in mining industries, applications of electrostatic precipitators in thermal power plants, biofuels, energy efficiency in building systems, etc. Helping readers develop an intuitive understanding of the relevant concepts in and solutions for achieving sustainability in medium and large-scale industries, the book offers a valuable resource for undergraduate, honors and postgraduate research students in the field of thermo-fluid engineering.
Supercritical fluids have been utilized for numerous scientific advancements and industrial innovations. As the concern for environmental sustainability grows, these fluids have been increasingly used for energy efficiency purposes. Advanced Applications of Supercritical Fluids in Energy Systems is a pivotal reference source for the latest academic material on the integration of supercritical fluids into contemporary energy-related applications. Highlighting innovative discussions on topics such as renewable energy, fluid dynamics, and heat and mass transfer, this book is ideally designed for researchers, academics, professionals, graduate students, and practitioners interested in the latest trends in energy conversion.
This book investigates in detail the concepts and principles of green chemistry and related methodologies, including green synthesis, green activation methods, green catalysis, green solvents, and green design to achieve process intensification while at the same time ensuring process safety and promoting ecological civilization and environmental protection. Moreover, it incorporates elements of chemical management and chemical education, highlighting chemists' responsibility to protect humankind and foster green and sustainable development in chemistry. Combining Chinese and Belarus wisdom, this book is intended for those working in the chemical industry who are interested in environmental protection and sustainable development, as well as undergraduate and graduate students who are interested in green chemistry and related technologies.
This volume addresses renewable energy communities, and in particular renewable energy cooperatives (REScoops), in the context of the revised EU Renewables Directive. It provides a comprehensive account of the history and development of the renewable energy community movement in over six different countries of continental Europe. It addresses their visions, strategy, organisation, agency, and more particularly the challenges they encounter. This is of particular importance to gain more understanding into how renewable energy communities fare in domestic energy markets where they are confronted with regime institutions, structures and incumbents' agency that tend to favour maintaining of the status quo while blocking attempts to empower and institutionalise renewable energy communities as market entrants having a disruptive, radical green and localist agenda. This volume will be an invaluable reference for academics and practitioners with an interest in social innovation in sustainable transitions, the role of community energy in energy markets, their agency, as well as an outlook to the impact that the EU Renewables Directive may have to change national legislation and policy frameworks to create a level playing field that is essentially more fair and beneficial to renewable energy communities.
This thesis focuses on the design and synthesis of novel one-dimensional colloidal chalcogenide hetero-nanostructures for enhancing solar energy conversion applications. Semiconducting nanomaterials are particular attractive for energy conversion due to the quantum confinement effects dictating their unique optical and electronic properties. Steering the photo-induced charge-flow based on unique bandgap alignment in semiconductor heterojunctions is critical for photo-electric/chemical conversion. The author presents the controllable preparation strategies to synthesize 1D chalcogenide hetero-nanostructures with various fine structures, further been used as excellent template materials for preparing other novel and complex hybrid architectures through a series of chemical transformations. The heterogeneous growth mechanisms of novel hetero-nanostructures is studied for developing a facile and general method to prepare more novel heterostructures. The band gap structure simulations, detailed charge carrier behaviour and unique solar energy conversion properties of the prepared hybrid nanostructures are deeply investigated. This work would open a new door to rationally designing hybrid systems for photo-induced applications.
Discusses the latest results in academia and industry on green composites. Existing machinability problems like low processability and reduction of the ductility are addressed and discussed in relation to use of adhesion promoters, additives or chemical modification of the filler to overcome these problems. Recent industrial efforts to minimize the environmental impact, e.g. biodegradable polymer matrix, renewable sources complete the approach.
This book presents novel findings concerning the systems, materials and processes used in solar energy conversion in communities. It begins with the core resource - solar radiation - and discusses the restrictions on the wide-scale implementation of conversion systems imposed by the built environment, as well as potential solutions. The book also describes efficient solar energy conversion in detail, focusing on heat and electricity production in communities and water reuse. Lastly, it analyzes the concept of sustainable communities, presenting examples from around the globe, along with novel approaches to improving their feasibility and affordability. Though chiefly intended for professionals working in the field of sustainability at the community level, the book will also be of interest to researchers, academics and doctoral students. |
You may like...
The New US Security Agenda - Trends and…
Brian Fonseca, Jonathan D. Rosen
Hardcover
R3,554
Discovery Miles 35 540
Post-Conflict Memorialization - Missing…
Olivette Otele, Luisa Gandolfo, …
Hardcover
R3,515
Discovery Miles 35 150
Handbook on Democracy and Security
Nicholas A. Seltzer, Steven L. Wilson
Hardcover
R5,434
Discovery Miles 54 340
Islamist Terrorism and Militancy in…
Kumar Ramakrishna
Hardcover
Islam and Political Violence - Muslim…
Shahram Akbarzadeh, Fethi Mansouri
Hardcover
R2,816
Discovery Miles 28 160
Radicalization in Belgium and the…
Nadia Fadil, Francesco Ragazzi, …
Hardcover
R3,632
Discovery Miles 36 320
|