![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Alternative & renewable energy sources & technology
This book demonstrates that solar energy, the most abundant and clean renewable energy, can be utilized to drive methane activation and conversion under mild conditions. The book reports that coupling solar energy and thermal energy can significantly enhance methane conversion at mild temperatures using plasmonic nanometal-based catalysts, with a substantial decrease in apparent activation energy of methane conversion. Furthermore, this book, for the first time, reports the direct photocatalytic methane oxidation into liquid oxygenates (methanol and formaldehyde) with only molecular oxygen in pure water at room temperature with high yield and selectivity over nanometals and semiconductors (zinc oxide and titanium dioxide). These findings are a big stride toward methane conversion and inspire researchers to develop strategies for efficient and selective conversion of methane to high-value-added chemicals under mild conditions.
Everybody knows that climate change is one of the greatest threats facing the planet. The costs of failure to act are becoming unthinkable. Yet we know now that if developed countries agree to cut their collective emissions by 30% by 2020, annual economic growth would be trimmed by less than 0.2% - a small price to pay to avoid the potential long-term costs of climate change. Moreover, it is easy to appreciate the positive value of other benefits such as reduced air pollution, security of energy supply at predictable prices, and improved competitiveness through innovation. Now, for the growing number of enterprises and investors committed to combating climate change with renewable energy technologies, here at last is a minutely detailed analysis of the opportunities and obstacles involved in developing a coherent and effective business strategy. Beginning with an in-depth and up-to-date overview of what we know about the climate change issue, the author goes on to an extensive survey of Renewable Energy Sources (RES), both existing and under development. Recognizing that, in the current state of global awareness, the European Union has taken by far the largest steps in tackling the enormous problems entailed by climate change, she explores in unprecedented detail the various "green" energy incentives and support schemes available under various programs available both at EU level and in each of the 27 Member States. Both project developers and investors will find out here exactly how to: significantly reduce the main market entry barrier - high costs; exploit synergies and avoid negative spillover effects through coordinated action; draw on all available policy levers, fiscal policies, structural and financial market reforms and external action; ensure full coherence between immediate actions and the EU's medium- to longer term objectives; take full account of the global nature of the problem and shape the EU's contribution to international responses; comply with technical provisions for monitoring, reporting and verification; and discern investment trends in the RES markets. Providing both knowledge of the industry and of relevant investment instruments, " Renewable Energy Sources" will serve as a powerful liaison between project developers and investors in the renewable energy market. Interested companies and their counsel will find here a ready reference for information on sources of equity/venture capital, detailed knowledge of available subsidies, business expansion strategies, viable investment options, and advantageous networks.
With energy consumption rising and with it our dependence on crude oil from politically uncertain regions, and faced with the threat to the environment from polluting emissions, it is becoming ever more evident that fuels from renewable resources are an increasingly attractive option to fossil fuels. Edinger and Kaul, like a growing number of other experts, hold the mobility of populations--transportation, in other words--responsposible for the rise in the rate of greenhouse gas emissions, a condition that can only get worse as less developed regions of the world emerge with their own needs and demands for mobility. What to do? Edinger and Kaul outline in sharp detail the shortcomings of current vehicular technologies and dominant fossil fuels. They present a careful, authoritative examination of innovative technologies that in their opinion have the best chance of combating dangerous reliance on conventional means of power, not only for transportation but other purposes as well. And they focus on special forms of fuel cell drive systems, with their high efficiencies and reduced consumptions, and on other emerging renewable technologies and their innovative, sustainable power sources--such as fuels from biomass and renewable electricity, a particularly promising source of energy for newly growing economies. Wide ranging in coverage, forthright in style, the book is an important review of how things are today, why they could get worse, but perhaps most importantly, what we can do about it.
Sustainable Communities Design Handbook: Green Engineering, Architecture, and Technology, Second Edition, brings together the major players responsible for sustainable development at both community and metropolitan scales. The book aims to explain and demonstrate the practice, planning, design, building and managing of the engineering, architectural and economic development of cities and communities to meet sustainable development objectives. Offering a holistic approach to creating sustainable communities, the book includes a 40 percent increase in new methods and technology over the last edition, and 50 percent more case studies from around the world to illustrate how common sustainability problems are solved. As the concept and practices of a sustainable built environment have evolved over the years, it is increasingly recognized that the scope should be expanded beyond individual buildings to the community scale. Written by an international team of engineers, architects, and environmental experts this second edition includes new HVAC technologies for heating and cooling, energy effect technologies for lighting, and new construction materials which improve heating and cooling efficiencies. This new edition will also include critical updates on international codes: LEED, BREEAM, and Green Globes.
This book discusses advanced technologies for applications in renewable energy and power systems. The topics covered include neural network applications in power electronics, deep learning applications in power systems, design and simulation of multilevel inverters, solid state transformers, neural network applications for fault detection in power electronics, etc. The book also discusses the important role of artificial intelligence in power systems, and machine learning for renewable energy. This book will be of interest to researchers, professionals, and technocrats looking at power systems, power distribution, and grid operations.
This thesis focuses on the design and synthesis of novel one-dimensional colloidal chalcogenide hetero-nanostructures for enhancing solar energy conversion applications. Semiconducting nanomaterials are particular attractive for energy conversion due to the quantum confinement effects dictating their unique optical and electronic properties. Steering the photo-induced charge-flow based on unique bandgap alignment in semiconductor heterojunctions is critical for photo-electric/chemical conversion. The author presents the controllable preparation strategies to synthesize 1D chalcogenide hetero-nanostructures with various fine structures, further been used as excellent template materials for preparing other novel and complex hybrid architectures through a series of chemical transformations. The heterogeneous growth mechanisms of novel hetero-nanostructures is studied for developing a facile and general method to prepare more novel heterostructures. The band gap structure simulations, detailed charge carrier behaviour and unique solar energy conversion properties of the prepared hybrid nanostructures are deeply investigated. This work would open a new door to rationally designing hybrid systems for photo-induced applications.
This book presents a comprehensive definition of smart grids and their benefits, and compares smart and traditional grids. It also introduces a design methodology for stand-alone hybrid renewable energy system with and without applying the smart grid concepts for comparison purposes. It discusses using renewable energy power plants to feed loads in remote areas as well as in central power plants connected to electric utilities. Smart grid concepts used in the design of the hybrid renewable power systems can reduce the size of components, which can be translated to a reduction in the cost of generated energy. The proposed hybrid renewable energy system includes wind, photovoltaic, battery, and diesel, and is used initially to feed certain loads, covering the load required completely. The book introduces a novel methodology taking the smart grid concept into account by dividing the loads into high and low priority parts. The high priority part should be supplied at any generated conditions. However, the low priority loads can be shifted to the time when the generated energy from renewable energy sources is greater than the high priority loads requirements. The results show that the use of this smart grid concept reduces the component size and the cost of generated energy compared to that without dividing the loads. The book also describes the use of smart optimization techniques like particle swarm optimization (PSO) and genetic algorithm (GA) to optimally design the hybrid renewable energy system. This book provides an excellent background to renewable energy sources, optimal sizing and locating of hybrid renewable energy sources, the best optimization methodologies for sizing and designing the components of hybrid renewable energy systems, and offers insights into using smart grid concepts in the system's design and sizing. It also helps readers understand the dispatch methodology and how to connect the system's different components, their modeling, and the cost analysis of the system.
Hydrogen Infrastructure for Energy Applications: Production, Storage, Distribution and Safety examines methodologies, new models and innovative strategies for the optimization and optimal control of the hydrogen logistic chain, with particular focus on a network of integrated facilities, sources of production, storage systems, infrastructures and the delivery process to the end users through hydrogen refueling stations. The book discusses the main motivations and criteria behind the adoption of hydrogen as an energy carrier or future fuel alternative. It presents current research in hydrogen production processes, especially from renewable energy sources, as well as storage and distribution. The book also reviews methods to model hydrogen demand uncertainties and challenges for the design of the future hydrogen supply chain. The authors go on to explore the network planning of hydrogen infrastructures, the safety and risk issues in hydrogen logistics and their future expectations. Energy engineering professionals, researchers and graduate students will find this a helpful resource to understand the methodologies used to assess the feasibility for developing hydrogen supply chains, hydrogen infrastructure and safety practices. Energy analysts and government agents can benefit from the book's detailed discussion of hydrogen energy applicability.
Energy from Waste is a concise, up-to-date and accessible guide on how to create power from both urban and industrial waste. The book explores the types of waste that, instead of going to landfill, can be converted to energy, also discussing the most up-to-date technologies for doing so. The book contains a strong emphasis on the related environmental impacts and economic factors involved in the various methods of generating electricity, making this a valuable and insightful read for those involved in the management and conversion of waste, including energy engineers, managers and technicians.
This book, which contains a collection of review articles as well as focus on evidence-based policy making, will serve as a valuable resource not just for all postgraduate students conducting research using systems analysis thinking but also for policy makers. To our knowledge, a book of this nature which also has a strong African focus is currently not available. The book examines environmental and socio-economic risks with the aim of providing an analytical foundation for the management and governance of natural resources, disasters, addressing climate change, and easing the technological and ecological transitions to sustainability. It provides scientific and strategic analysis to better understand the dynamics of future energy transitions, their main driving forces, enabling factors, barriers, as well as their consequences for the social, economic and environmental dimensions of human wellbeing. Science-based policy advice is achieved through an integrated assessment and modeling of how to simultaneously address the major energy policy challenges in the areas of environment (climate change and air pollution), energy poverty (or access to affordable and clean energy for the poor), energy security and reliability. It also aims to improve our understanding of ecosystems and their management in today's changing world-in particular, the current state of ecosystems, and their ecological thresholds and buffering capacities. It provides support for policy makers in developing rational, realistic and science-based regional, national and global strategies for the production of fuel, food and fibre that sustain ecosystem services and safeguard food security. Finally, it addresses the human development dimension of global change based on comprehensive studies on the changing size and composition of human populations around the world by analyzing both their impacts and the differential vulnerabilities by age, gender and level of education.
More than 20 countries generate electricity from geothermal
resources and about 60 countries make direct use of geothermal
energy. A ten-fold increase in geothermal energy use is foreseeable
at the current technology level.
This edited book looks at recent studies on interdisciplinary research related to exergy, energy, and the environment. This topic is of prime significance - there is a strong need for practical solutions through better design, analysis and assessment in order to achieve better efficiency, environment and sustainability. Exergetic, Energetic and Environmental Dimensions covers a number of topics ranging from thermodynamic optimization of energy systems, to the environmental impact assessment and clean energy, offering readers a comprehensive reference on analysis, modeling, development, experimental investigation, and improvement of many micro to macro systems and applications, ranging from basic to advanced categories. Its comprehensive content includes: Comprehensive coverage of development of systems considering exergy, energy, and environmental issues, along with the most up-to-date information in the area, plus recent developments New developments in the area of exergy, including recent debate involving the shaping of future directions and priorities for better environment, sustainable development and energy security Provides a number of illustrative examples, practical applications, and case studies
This book discusses a number of important topical technical and non-technical issues related to the global energy, environment and socio-economic developments for professionals and students directly and indirectly involved in the relevant fields. It shows how renewable energy offers solutions to mitigate energy demand and helps achieve a clean environment, and also addresses the lack of a clear vision in the development of technology and a policy to reach the mandatory global renewable energy targets to reduce greenhouse gas emissions and stimulate socio-economic development. The book is structured in such a way that it provides a consistent compilation of fundamental theories, a compendium of current research and development activities as well as new directions to overcome critical limitations; future technologies for power grids and their control, stability and reliability are also presented.
This book details three main topics: the screening and characterization of hydrocarbons from air, soil and water; technologies in the biodegradation of hydrocarbons; and the bioconversion of hydrocarbons for biofuel/chemicals, as well as recent developments in the remediation of hydrocarbons and their environmental benefits. The first section focuses on screening methods, qualitative and quantitative analysis of hydrocarbons from soil, air and water environments, speciation of hydrocarbons, and natural bioremediation strategies in such environments. The second section examines technologies for removing hydrocarbon contaminants from various environments, especially advanced technologies for the removal of hydrocarbons and in-situ and ex-situ remediation strategies and problems, as well as concrete case studies. The last section, covering the bioconversion of hydrocarbons for biofuel/chemicals, highlights the biochemicals and bioproducts developed from hydrocarbons, with a particular focus on biochemical and chemical technologies used to produce biopolymers, biofuel precursors and commodity chemicals from hydrocarbons.
This book provides a basic understanding of spectroscopic ellipsometry, with a focus on characterization methods of a broad range of solar cell materials/devices, from traditional solar cell materials (Si, CuInGaSe2, and CdTe) to more advanced emerging materials (Cu2ZnSnSe4, organics, and hybrid perovskites), fulfilling a critical need in the photovoltaic community. The book describes optical constants of a variety of semiconductor light absorbers, transparent conductive oxides and metals that are vital for the interpretation of solar cell characteristics and device simulations. It is divided into four parts: fundamental principles of ellipsometry; characterization of solar cell materials/structures; ellipsometry applications including optical simulations of solar cell devices and online monitoring of film processing; and the optical constants of solar cell component layers.
This book presents modern approaches to improving the energy efficiency, safety and environmental performance of industrial processes and products, based on the application of advanced trends in Green Information Technologies (IT) Engineering to components, networks and complex systems (software, programmable and hardware components, communications, Cloud and IoT-based systems, as well as IT infrastructures). The book's 16 chapters, prepared by authors from Greece, Malaysia, Russia, Slovakia, Ukraine and the United Kingdom, are grouped into four sections: (1) The Green Internet of Things, Cloud Computing and Data Mining, (2) Green Mobile and Embedded Control Systems, (3) Green Logic and FPGA Design, and (4) Green IT for Industry and Smart Grids. The book will motivate researchers and engineers from different IT domains to develop, implement and propagate green values in complex systems. Further, it will benefit all scientists and graduate students pursuing research in computer science with a focus on green IT engineering.
This book identifies the challenges, solutions, and opportunities offered by smart energy grids (SEGs) with regard to the storage and regulation of diversified energy sources such as photovoltaic, wind, and ocean energy. It provides a detailed analysis of the stability and availability of renewable sources, and assesses relevant socioeconomic structures. The book also presents case studies to maximize readers’ understanding of energy grid management and optimization. Moreover, it offers guidelines on the design, implementation, and maintenance of the (SEG) for island countries.
This book presents novel findings concerning the systems, materials and processes used in solar energy conversion in communities. It begins with the core resource - solar radiation - and discusses the restrictions on the wide-scale implementation of conversion systems imposed by the built environment, as well as potential solutions. The book also describes efficient solar energy conversion in detail, focusing on heat and electricity production in communities and water reuse. Lastly, it analyzes the concept of sustainable communities, presenting examples from around the globe, along with novel approaches to improving their feasibility and affordability. Though chiefly intended for professionals working in the field of sustainability at the community level, the book will also be of interest to researchers, academics and doctoral students.
This book investigates in detail the concepts and principles of green chemistry and related methodologies, including green synthesis, green activation methods, green catalysis, green solvents, and green design to achieve process intensification while at the same time ensuring process safety and promoting ecological civilization and environmental protection. Moreover, it incorporates elements of chemical management and chemical education, highlighting chemists' responsibility to protect humankind and foster green and sustainable development in chemistry. Combining Chinese and Belarus wisdom, this book is intended for those working in the chemical industry who are interested in environmental protection and sustainable development, as well as undergraduate and graduate students who are interested in green chemistry and related technologies.
This book is a concise reader-friendly introductory guide to understanding renewable energy technologies. By using simplified classroom-tested methods developed while teaching the subject to engineering students, the authors explain in simple language an otherwise complex subject in terms that enable readers to gain a rapid fundamental understanding of renewable energy, including basic principles, the different types, energy storage, grid integration, and economies. This powerful tutorial is a great resource for students, engineers, technicians, analysts, investors, and other busy professionals who need to quickly acquire a solid understanding of the science of renewable energy technology.
This book features research related to computational intelligence and energy and thermal aware management of computing resources. The authors publish original and timely research in current areas of power, energy, temperature, and environmental engineering as and advances in computational intelligence that are benefiting the fields. Topics include signal processing architectures, algorithms, and applications; biomedical informatics and computation; artificial intelligence and machine learning; green technologies in information; and more. The book includes contributions from a wide range of researchers, academicians, and industry professionals. The book is made up both of extended papers presented at the International Conference on Intelligent Computing and Sustainable System (ICICSS 2018), September 20-21, 2018, and other accepted papers on R&D and original research work related to the practice and theory of technologies to enable and support Intelligent Computing applications. |
![]() ![]() You may like...
Tafsir al-Qurtubi Vol. 3 - Juz' 3: Sūrat…
Abu 'Abdullah Muhammad Al-Qurtubi
Hardcover
R1,196
Discovery Miles 11 960
Dietary Lipids: Nutritional and…
CrĂspulo Gallegos-Montes, Victoria Ruiz MĂ©ndez
Hardcover
R4,168
Discovery Miles 41 680
Ecological and Environmental Physiology…
Jon F. Harrison, H. Arthur Woods, …
Hardcover
R4,294
Discovery Miles 42 940
|