![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Alternative & renewable energy sources & technology
Introduction to Transfer Phenomena in PEM Fuel Cells presents the fruit of several years of research in the area of fuel cells. The book illustrates the transfer phenomena occurring inside a single cell and describes the technology field of hydrogen, explicitly the production, storage and risk management of hydrogen as an energy carrier. Several applications of hydrogen are also cited, and special interest is dedicated to the PEM Fuel Cell. Mass, charge and heat transfer phenomena are also discussed in this great resource that includes explanations, illustrations and governing equations for each section.
This book examines the potential applications of nanoscience and nanotechnology to promote eco-friendly processes and techniques for energy and environment sustainability. Covering various aspects of both the synthesis and applications of nanoparticles and nanofluids for energy and environmental engineering, its goal is to promote eco-friendly processes and techniques. Accordingly, the book elaborates on the development of reliable, economical, eco-friendly processes through advanced nanoscience and technological research and innovations. Gathering contributions by researchers actively engaged in various domains of nanoscience and technology, it addresses topics such as nanoparticle synthesis (both top-down and bottom-up approaches); applications of nanomaterials, nanosensors and plasma discharge in pollution control; environmental monitoring; agriculture; energy recovery; production enhancement; energy conservation and storage; surface modification of materials for energy storage; fuel cells; pollution mitigation; and CO2 capture and sequestration. Given its scope, the book will be of interest to academics and researchers whose work involves nanotechnology or nanomaterials, especially as applied to energy and/or environmental sustainability engineering. Graduate students in the same areas will also find it a valuable resource.
This book aims to be the reference book in the area of oxyfuel combustion, covering the fundamentals, design considerations and current challenges in the field. Its first part provides an overview of the greenhouse gas emission problem and the current carbon capture and sequestration technologies. The second part introduces oxy-fuel combustion technologies with emphasis on system efficiency, combustion and emission characteristics, applications and related challenges. The third part focuses on the recent developments in ion transport membranes and their performance in both oxygen separation units and oxygen transport reactors (OTRs). The fourth part presents novel approaches for clean combustion in gas turbines and boilers. Computational modelling and optimization of combustion in gas turbine combustors and boiler furnaces are presented in the fifth part with some numerical results and detailed analyses.
This book describes an original improvement in power quality of photovoltaic generation systems obtained by the use of a multilevel inverter implemented with level doubling network (LDN). Modulation principles and harmonic analysis of output voltages are proposed and introduced in detail for both single and three-phase LDN configurations. The analysis is then extended to dc-link current and voltage, with emphasis to low-frequency harmonics and switching frequency ripple. This work represents the first comprehensive implementation of maximum power point tracking (MPPT) schemes using the ripple correlation control (RCC) algorithm in the presence of multiple ripple harmonics, such as in the case of multi level inverters. Numerical simulations and experimental tests are carefully reported here, together with practical insights into the design of dc-link capacitors.
This book contains selected papers presented during the bi-annual World Renewable Energy Network's Med Green Forum aimed at the international community as well as Mediterranean countries. This forum highlights the importance of growing renewable energy applications in two main sectors: Electricity Generation and the Sustainable Building Sector. In-depth chapters highlight the most current research and technological breakthroughs, covering a broad range of renewable energy technologies and applications in all sectors - for electricity production, heating and cooling, agricultural applications, water desalination, industrial applications and for the transport sectors.
This book comprises state-of-the-art advances in energy, combustion, power, propulsion, environment, focusing on the production and utilization of fossil fuels, alternative fuels and biofuels. It is written by internationally renowned experts who provide the latest fundamental and applied research innovations on cleaner energy production as well as utilization for a wide range of devices extending from micro scale energy conversion to hypersonic propulsion using hydrocarbon fuels. The tailored technical tracks and contributions are portrayed in the respective field to highlight different but complementary views on fuels, combustion, power and propulsion and air toxins with special focus on current and future R&D needs and activities. This book will serve as a useful reference for practicing engineers, research engineers and managers in industry and research labs, academic institutions, graduate students, and final year undergraduate students in mechanical, chemical, aerospace, energy, and environmental engineering.
This book is the result of recent research that deals with the built environment and innovative materials, carried out by specialists working in universities and centers of research in different professional fields architecture, engineering, physics and in an area that that spans from the Mediterranean Sea to the Persian Gulf, and from South Eastern Europe to the Middle East. This book takes the necessity of re-shaping the concept of building design in order to transform buildings from large scale energy consumers to energy savers and producers into consideration. The book is organized in two parts: theory and case studies. For the theoretical part, we chose from the wide range of sources that provide energy efficient materials and systems the two that seem to be endless: the sun and vegetation. Their use in building products represents a tool for specialists in the architectural design concept. The case-studies presented analyze different architectural programs, in different climates, from new buildings to rehabilitation approaches and from residential architecture to hospitals and sports arenas; each case emphasizes the interdisciplinarity of the building design activity in order to help readers gain a better understanding of the complex approach needed for energy efficient building design
This book presents a very useful and readable collection of chapters in nanotechnologies for energy conversion, storage, and utilization, offering new results which are sure to be of interest to researchers, students, and engineers in the field of nanotechnologies and energy. Readers will find energy systems and nanotechnology very useful in many ways such as generation of energy policy, waste management, nanofluid preparation and numerical modelling, energy storage, and many other energy-related areas. It is also useful as reference book for many energy and nanofluid-related courses being taken up by graduate and undergraduate students. In particular, this book provides insights into various forms of renewable energy, such as biogas, solar energy, photovoltaic, solar cells, and solar thermal energy storage. Also, it deals with the CFD simulations of various aspects of nanofluids/hybrid nanofluids.
This book is a concise introductory guide to understanding the foundations of electrochemistry. By using simplified classroom-tested methods developed while teaching the subject to engineering students, the author explains in simple language an otherwise complex subject that can be difficult to master for most. It provides readers with an understanding of important electrochemical processes and practical industrial applications, such as electrolysis processes, metal electrowinning, corrosion and analytical applications, and galvanic cells such as batteries, fuel cells, and supercapacitors. This powerful tutorial is a great resource for students, engineers, technicians, and other busy professionals who need to quickly acquire a solid understanding of the science of electrochemistry.
This Handbook is the first volume to comprehensively analyse and problem-solve how to manage the decline of fossil fuels as the world tackles climate change and shifts towards a low-carbon energy transition. The overall findings are straight-forward and unsurprising: although fossil fuels have powered the industrialisation of many nations and improved the lives of hundreds of millions of people, another century dominated by fossil fuels would be disastrous. Fossil fuels and associated greenhouse gas emissions must be reduced to a level that avoids rising temperatures and rising risks in support of a just and sustainable energy transition. Divided into four sections and 25 contributions from global leading experts, the chapters span a wide range of energy technologies and sources including fossil fuels, carbon mitigation options, renewables, low carbon energy, energy storage, electric vehicles and energy sectors (electricity, heat and transport). They cover varied legal jurisdictions and multiple governance approaches encompassing multi- and inter-disciplinary technological, environmental, social, economic, political, legal and policy perspectives with timely case studies from Africa, Asia, Australia, Europe, North America, South America and the Pacific. Providing an insightful contribution to the literature and a much-needed synthesis of the field as a whole, this book will have great appeal to decision makers, practitioners, students and scholars in the field of energy transition studies seeking a comprehensive understanding of the opportunities and challenges in managing the decline of fossil fuels.
This book discusses the design and scheduling of residential, industrial, and commercial energy hubs, and their integration into energy storage technologies and renewable energy sources. Each chapter provides theoretical background and application examples for specific power systems including, solar, wind, geothermal, air and hydro. Case-studies are included to provide engineers, researchers, and students with the most modern technical and intelligent approaches to solving power and energy integration problems with special attention given to the environmental and economic aspects of energy storage systems.
Design, Deployment and Operation of a Hydrogen Supply Chain introduces current energy system and the challenges that may hinder the large-scale adoption of hydrogen as an energy carrier. It covers the different aspects of a methodological framework for designing a HSC, including production, storage, transportation and infrastructure. Each technology's advantages and drawbacks are evaluated, including their technology readiness level (TRL). The multiple applications of hydrogen for energy are presented, including use in fuel cells, combustion engines, as an alternative to natural gas and power to gas. Through analysis and forecasting, the authors explore deployment scenarios, considering the dynamic aspect of HSCs. In addition, the book proposes methods and tools that can be selected for a multi-criteria optimal design, including performance drivers and economic, environmental and societal metrics. Due to its systems-based approach, this book is ideal for engineering professionals, researchers and graduate students in the field of energy systems, energy supply and management, process systems and even policymakers.
The book presents novel Computational Fluid Dynamics (CFD) techniques to compute offshore wind and tidal applications. The papers in this volume are based on a mini-symposium held at ECCOMAS 2018. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments amongst other topics.
The purpose of this book is to present a range of cases and comparison of the issues, insights and cases emerging from the Sustainable Energy Mix Summit in the Galapagos that offer a better understanding of energy mix in fragile environments from a variety of International locations and contexts including the Galapagos.
This book reflects the current state of knowledge on sustainability in a wide range of fields, from engineering to agriculture, to education. Though primarily intended to offer an update for experts and researchers in the field, it can also be used as a valuable educational tool for relevant undergraduate and graduate courses. Key aspects covered include the better and more responsible engineering and management of energy conversion processes, the development of renewable energy technologies, and improvements in conventional energy utilization and food production. In addition, the book addresses green buildings, the green economy, waste and recycling, water, ecopolitics and social sustainability.
This book highlights Small Modular Reactors (SMRs) as a viable alternative to the Nuclear Power Plants (NPPs), which have been used as desalination plant energy sources. SMRs have lower investment costs, inherent safety features, and increased availability compared to NPPs. The unique and innovative approach to implementation of SMRs as part of Gen-IV technology outlined in this book contributes to the application of nuclear power as a supplementary source to renewable energy. Discusses Gen-IV Power plants, their efficiency, cost effectiveness, safety, and methods to supply renewable energy; Presents Small Modular Reactors as a viable alternative to Nuclear Power Plants; Describes the benefits, uses, safety features, and challenges related to implementation of Small Modular Reactors.
This book explores key theoretical and empirical issues related to the development and implementation of planning strategies that can provide guidance on the transition to climate-compatible and low-carbon urban development. It especially focuses on integrating resilience thinking into the urban planning process, and explains how such an integration can contribute to reflecting the dynamic properties of cities and coping with the uncertainties inherent in future climate change projections. Some of the main questions addressed are: What are the innovative methods and processes needed to incorporate resilience thinking into urban planning? What are the characteristics of a resilient urban form and what are the challenges associated with integrating them into urban development? Also, how can the resilience of cities be measured and what are the main constituents of an urban resilience assessment framework? In addition to addressing these crucial questions, the book features several case studies from around the world, investigating methodologies, challenges, and opportunities for mainstreaming climate resilience in the theory and practice of urban planning. Featuring contributions by prominent researchers from around the world, the book offers a valuable resource for students, academics and practitioners alike.
This book presents original, peer-reviewed research papers from the 4th Purple Mountain Forum -International Forum on Smart Grid Protection and Control (PMF2019-SGPC), held in Nanjing, China on August 17-18, 2019. Addressing the latest research hotspots in the power industry, such as renewable energy integration, flexible interconnection of large scale power grids, integrated energy system, and cyber physical power systems, the papers share the latest research findings and practical application examples of the new theories, methodologies and algorithms in these areas. As such book a valuable reference for researchers, engineers, and university students.
This book discusses sustainable development decision-making. Focusing on decisions to invest in wind turbine technology as part of a corporation's CO2 emission reduction strategy, it presents a new evaluation framework, based on the triple bottom line framework widely used by businesses to communicate their adherence to corporate social responsibility. This new framework allows the evaluation of strategic corporate decisions to invest in wind turbines to mitigate global warming in the context of a corporation's social responsibility, and includes an objective measurement stage to add rigor to the evaluation process. The book describes the use of measured data from wind turbine projects to both develop and validate the methodology, and also identifies key enablers and barriers as businesses attempt to successfully integrate corporate social responsibility into their overall business strategy. Given its scope, the book appeals to postgraduate students, researchers, and business professionals interested in the environmental impact of corporations. Featuring case studies from Ireland, it is particularly relevant to audiences within Europe.
There is currently significant interest in exploring and identifying new inorganic solar energy conversion systems based on Earth-abundant non-toxic materials for future sustainable energy applications and technologies. Developments in emergent inorganic absorbers are closely tied to the ability of researchers to correlate and predict device performance from structural and optical properties. The understanding of material structure and bonding and their effect on performance are key to developing guiding principles for design and screening of inorganic photovoltaic materials. Progress toward such understanding is facilitated by state-of-the-art tools for structural and electronic characterisation of semiconductor materials and interfaces, as well as device design and performance analysis. Further insight is provided by computer modelling and simulations. This volume brings together internationally leading scientists working in areas of material design and modelling, structural and electronic characterisation, and device design and performance analysis, to explore and exchange ideas on emerging inorganic thin-film photovoltaics based on Earth abundant non-toxic materials. In this volume, the topics covered include: Indium-free CIGS analogues Bulk and surface characterisation techniques of solar absorbers Novel chalcogenides, pnictides and defect-tolerant semiconductors Materials design and bonding
This book provides recent trends and innovation in solar energy. It covers the basic principles and applications of solar energy systems. Various topics covered in this book include introduction and overview of solar energy, solar PV generation, solar thermal generation, innovative applications of solar energy, smart energy system, smart grid and sustainability, solar energy forecasting, advances in solar battery, thermal storage of solar energy, solar energy pricing, advances in hybrid solar system, solar system tracking for maximum power generation, phase change materials and its application, sensitivity analysis in solar systems, environmental feasibility of solar hybrid systems, regulatory implications of solar energy integration with grid, impact of the photovoltaic integration on the hydrothermal dispatch on power systems and potential and financial evaluation of floating solar PV in Thailand-a case study. This book will be useful for the students, academicians, researchers, policymakers, economists and professionals working in the area of solar energy.
This book provides a single-source reference for whole life embodied impacts of buildings. The comprehensive and persuasive text, written by over 50 invited experts from across the world, offers an indispensable resource both to newcomers and to established practitioners in the field. Ultimately it provides a persuasive argument as to why embodied impacts are an essential aspect of sustainable built environments. The book is divided into four sections: measurement, including a strong emphasis on uncertainty analysis, as well as offering practical case studies of individual buildings and a comparison of materials; management, focusing in particular on the perspective of designers and contractors; mitigation, which identifies some specific design strategies as well as challenges; and finally global approaches, six chapters which describe in authoritative detail the ways in which the different regions of the world are tackling the issue.
This book presents a state-of-the-art analysis of energy efficiency as applied to mining processes. From ground fragmentation to mineral processing and extractive metallurgy, experts discuss the current state of knowledge and the nagging questions that call for further research. It offers an excellent resource for all mine managers and engineers who want to improve energy efficiency to boost both production efficiency and sustainability. It will also benefit graduate students and experienced researchers looking for a comprehensive review of the current state of knowledge concerning energy efficiency in the minerals industry.
This book introduces and analyses the latest maximum power point tracking (MPPT) techniques, which can effectively reduce the cost of power generated from photovoltaic energy systems. It also presents a detailed description, analysis, and comparison of various MPPT techniques applied to stand-alone systems and those interfaced with electric utilities, examining their performance under normal and abnormal operating conditions. These techniques, which and can be conventional or smart, are a current hot topic, and this book is a valuable reference resource for academic researchers and industry professionals who are interested in exploring and implementing advanced MPPT for photovoltaic systems. It is also useful for graduate students who are looking to expand their knowledge of MPPT techniques. |
![]() ![]() You may like...
Media Models to Foster Collective Human…
Stephen Brock Schafer
Hardcover
R5,299
Discovery Miles 52 990
Sectarianism, De-Sectarianization and…
Samira Nasirzadeh, Elias Ghazal, …
Hardcover
R3,030
Discovery Miles 30 300
Measuring and Modeling Persons and…
Dustin Wood, Stephen J. Read, …
Paperback
R3,258
Discovery Miles 32 580
Neuroscience of Mathematical Cognitive…
Rhonda Douglas Brown
Hardcover
R2,628
Discovery Miles 26 280
|