![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Alternative & renewable energy sources & technology
This book outlines the underlying principles on which modern road lighting is based, and provides the reader with knowledge of how these principles should be applied in practice. This book offers a completely fresh approach to the subject, reflecting how the technology of road lighting has progressed to keep up with the changes in lamp technology, especially in solid state light sources, and the increasing awareness of energy use and environmental issues. The book is divided into three parts. Part One describes lighting of open roads, with chapters discussing visual performance and comfort (including the effects of mesopic vision and age), and international standards and recommendations for road lighting. Lighting equipment is introduced; specifically lamps and luminaires in terms of their practical properties and features, but also the road surface and its characteristics. A chapter on Lighting Design makes the link between theory and practice, providing the reader with the knowledge needed for effective lighting design, including aspects relating to sustainability. The final chapter of Part One deals with lighting calculation conventions and measurements. Part Two is devoted to light pollution. The negative consequences of light pollution are described and tactics to restrict light pollution explained. Lighting criteria are defined that can be used by the lighting designer to guarantee installations stay within acceptable limits. International standards and recommendations on the restriction of light pollution are discussed. Part Three is devoted to tunnel lighting, with chapters discussing visual performance in tunnel environments, lighting criteria, standards and recommendations, and concluding with a chapter on tunnel lighting equipment and design. This book is a valuable resource for road lighting designers and engineers, students of lighting design and engineering, town planners, traffic engineers, environmental specialists, and lamp and luminaire developers and manufacturers.
Optimal Control of Hybrid Vehicles provides a description of power train control for hybrid vehicles. The background, environmental motivation and control challenges associated with hybrid vehicles are introduced. The text includes mathematical models for all relevant components in the hybrid power train. The power split problem in hybrid power trains is formally described and several numerical solutions detailed, including dynamic programming and a novel solution for state-constrained optimal control problems based on the maximum principle. Real-time-implementable strategies that can approximate the optimal solution closely are dealt with in depth. Several approaches are discussed and compared, including a state-of-the-art strategy which is adaptive for vehicle conditions like velocity and mass. Three case studies are included in the book: * a control strategy for a micro-hybrid power train; * experimental results obtained with a real-time strategy implemented in a hybrid electric truck; and * an analysis of the optimal component sizes for a hybrid power train. Optimal Control of Hybrid Vehicles will appeal to academic researchers and graduate students interested in hybrid vehicle control or in the applications of optimal control. Practitioners working in the design of control systems for the automotive industry will also find the ideas propounded in this book of interest.
This book provides a comprehensive introduction to the thermal issues in photovoltaics. It also offers an extensive overview of the physics involved and insights into possible thermal optimizations of the different photovoltaic device technologies.In general, temperature negatively affects the efficiency of photovoltaic devices. The first chapter describes the temperature-induced losses in photovoltaic devices and reviews the strategies to overcome them. The second chapter introduces the concept of temperature coefficient, the underlying physics and some guidelines for reducing their negative impacts. Subsequent chapters offer a comprehensive and general thermal model of photovoltaic devices, and review how current and emerging technologies, mainly solar cells but also thermophotovoltaic devices, can benefit from thermal optimizations.Throughout the book, the authors argue that the energy yield of photovoltaic devices can be optimized by taking their thermal behavior and operating conditions into consideration in their design.
An apparently appropriate control scheme for PEM fuel cells may actually lead to an inoperable plant when it is connected to other unit operations in a process with recycle streams and energy integration. PEM Fuel Cells with Bio-Ethanol Processor Systems presents a control system design that provides basic regulation of the hydrogen production process with PEM fuel cells. It then goes on to construct a fault diagnosis system to improve plant safety above this control structure. PEM Fuel Cells with Bio-Ethanol Processor Systems is divided into two parts: the first covers fuel cells and the second discusses plants for hydrogen production from bio-ethanol to feed PEM fuel cells. Both parts give detailed analyses of modeling, simulation, advanced control, and fault diagnosis. They give an extensive, in-depth discussion of the problems that can occur in fuel cell systems and propose a way to control these systems through advanced control algorithms. A significant part of the book is also given over to computer-aided engineering software tools that can be used to evaluate the dynamic performance of the overall plant. PEM Fuel Cells with Bio-Ethanol Processor Systems is intended for use by researchers and advanced students on chemical, electrical-electronic and mechanical engineering courses in which dynamics and control are incorporated with the traditional steady-state coverage of flowsheet synthesis, engineering economics and optimization.
These conference proceedings provide a comprehensive overview of and in-depth technical information on all possible bioenergy resources (solid, liquid, and gaseous), including cutting-edge themes such as advanced fuels and biogas. The book includes current state-of-the-art topics ranging from feedstocks and cost-effective conversion processes to biofuels economic analysis and environmental policy, and features case studies and quizzes for each section derived from the implementation of actual hands-on biofuel projects to aid learning. It offers readers a starting point on this challenging and exciting path. The central concepts are defined and explained in the context of process applications under various topics. By focussing on the pertinent fundamental principles in the environment and energy sciences and by repeatedly emphasizing the importance of their correlation, it offers a strong foundation for future study and practice. Learning about fundamental properties and mechanisms on an ongoing basis is absolutely essential for long-term professional viability in a technically vibrant area such as nanotechnology. The book has been written for undergraduate and graduate students in chemical, energy and environment engineering. However, selected sections can provide the basis for courses in civil, mechanical or electrical engineering. It includes a self-contained presentation of the key concepts of energy resources, solar thermal and photovoltaic systems, nuclear energy, biomass conversion technology and agricultural-waste processing. Throughout it interweaves descriptive material on sustainable development, clean coal technology, green technology, solid-waste management and lifecycle assessments. It offers an introduction to these topics rather than comprehensive coverage of the themes and their in-depth fundamentals.
These proceedings collect selected papers from the 7th International Conference on Green Intelligent Transportation System and Safety held in Nanjing on July 1-4, 2016. The selected works, which include state-of-the-art studies, are intended to promote the development of green mobility and intelligent transportation technology to achieve interconnectivity, resource sharing, flexibility and higher efficiency. They offer valuable insights for researchers and engineers in the fields of Transportation Technology and Traffic Engineering, Automotive and Mechanical Engineering, Industrial and System Engineering, and Electrical Engineering.
The book summarizes Ting Lei's PhD study on a series of novel conjugated polymers for field-effect transistors (FETs). Studies contain many aspects of polymer FETs, including backbone design, side-chain engineering, property study, conformation effects and device fabrication. The research results have previously scattered in many important journals and conferences worldwide. The book is likely to be of interest to university researchers, engineers and graduate students in materials sciences and chemistry who wish to learn some principles, strategy, and applications of polymer FETs.
This book presents methodologies suitable for the optimal design of control and diagnosis strategies for Solid Oxide Fuel Cell (SOFC) systems. One key feature of the methodologies presented is the use of modeling tools with an ideal balance between accuracy and computational burden. Particular emphasis is given to the useful combination of models within a hierarchical framework to reduce the experimental efforts required for characterization and testing. Such tools are proven to be highly effective for SOFC systems destined for both residential and transportation applications. Throughout the book, optimization is always conceived in such a way so as to allow the SOFC systems to work efficiently while guaranteeing safe thermal operation, as well as an extended lifetime. This book is aimed at scientists and engineers involved in the design of marketable SOFC systems. It gathers the knowledge and experience derived from other research and industry practice for which control and diagnosis have proven to be the main keys to success and market penetration.
Modeling of photovoltaic sources and their emulation by means of power electronic converters are challenging issues. The former is tied to the knowledge of the electrical behavior of the PV generator; the latter consists in its realization by a suitable power amplifier. This extensive introduction to the modeling of PV generators and their emulation by means of power electronic converters will aid in understanding and improving design and set up of new PV plants. The main benefit of reading Photovoltaic Sources is the ability to face the emulation of photovoltaic generators obtained by the design of a suitable equipment in which voltage and current are the same as in a real source. This is achieved according to the following steps: the source electrical behavior modeling, the power converter design, including its control, for the laboratory emulator. This approach allows the reader to cope with the creation of an indoor virtual photovoltaic plant, in which the environmental conditions can be imposed by the user, for testing real operation including maximum power point tracking, partial shading, control for the grid or load interfacing, etc. Photovoltaic Sources is intended to meet the demands of postgraduate level students, and should prove useful to professional engineers and researchers dealing with the problems associated with modeling and emulation of photovoltaic sources.
This book provides a comprehensive guide to the design of sustainable and green computing systems (GSC). Coverage includes important breakthroughs in various aspects of GSC, including multi-core architectures, interconnection technology, data centers, high performance computing (HPC), and sensor networks. The authors address the challenges of power efficiency and sustainability in various contexts, including system design, computer architecture, programming languages, compilers and networking.
This volume collects the papers from the World Conference on Acoustic Emission 2015 (WCAE-2015) in Hawaii. The latest research and applications of Acoustic Emission (AE) are explored, with particular emphasis on detecting and processing of AE signals, development of AE instrument and testing standards, AE of materials, engineering structures and systems, including the processing of collected data and analytical techniques as well as experimental case studies.
The work builds on the results of the COMPETE Bioenergy Competence Platform for Africa, which was supported by the European Commission and coordinated by WIP Renewable Energies, Germany. The five sections cover biomass production and use, biomass technologies and markets in Africa, biomass policies, sustainability, and financial and socio-economic issues. This valuable work is, in effect, a single-source treatment of a key energy sector in a part of the world which still has a lot of unrealised potential for development.
Cellulolytic Enzyme Production and Enzymatic Hydrolysis for Second-Generation Bioethanol Production, by Mingyu Wang, Zhonghai Li, Xu Fang, Lushan Wang und Yinbo Qu Bioethanol from Lignocellulosic Biomass, by Xin-Qing Zhao, Li-Han Zi, Feng-Wu Bai, Hai-Long Lin, Xiao-Ming Hao, Guo-Jun Yue und Nancy W. Y. Ho Biodiesel From Conventional Feedstocks, by Wei Du und De-Hua Liu Establishing Oleaginous Microalgae Research Models for Consolidated Bioprocessing of Solar Energy, by Dongmei Wang, Yandu Lu, He Huang und Jian Xu Biobutanol, by Hongjun Dong, Wenwen Tao, Zongjie Dai, Liejian Yang, Fuyu Gong, Yanping Zhang und Yin Li Branched-Chain Higher Alcohols, by Bao-Wei Wang, Ai-Qin Shi, Ran Tu, Xue-Li Zhang, Qin-Hong Wang und Feng-Wu Bai Advances in Biogas Technology, by Ai-Jie Wang, Wen-Wei Li und Han-Qing Yu Biohydrogen Production from Anaerobic Fermentation, by Ai-Jie Wang, Guang-Li Cao und Wen-Zong Liu Microbial Fuel Cells in Power Generation and Extended Applications, by Wen-Wei Li and Guo-Ping Sheng Fuels and Chemicals from Hemicellulose Sugars, by Xiao-Jun Ji, He Huang, Zhi-Kui Nie, Liang Qu, Qing Xu and George T. Tsao
The second part of Bioenergy: Principles and Technologies continues the discussion of biomass energy technologies covering fuel ethanol production, pyrolysis, biomass-based hydrogen production and fuel synthesis, biodiesel, municipal solid water treatment and microbial fuel cells. With a combination of theories, experiments and case studies, it is an essential reference for bioenergy researchers, industrial chemists and chemical engineers.
This volume represents the proceedings of the Second International Conference on Sustainability in Energy and Buildings, SEB'10, held in the City of Brighton and Hove in the United Kingdom, and organised by KES International. Organised by the KES International organisation, SEB'10 formed a welcome opportunity for researchers in subjects related to sustainability, renewable energy technology, and applications in the built environment to mix with other scientists, industrialists and stakeholders in the field. SEB'10 attracted papers on a range of renewable energy and sustainability related topics and in addition the conference explored two innovative themes:- * The application of intelligent sensing, control, optimisation and modelling techniques to sustainability and * The technology of sustainable buildings. These techniques could ultimately be applied to the intelligent building SEB'10 attracted about 100 submissions from around the world. These were subjected to a two-stage blind peer-review process. With the objective of producing a high quality conference, the best 30% of these were selected for presentation at the conference and publication in this volume of proceedings. The papers in this volume are grouped into the five themes under which they were presented: Building Sustainability, Sustainable Power Generation, Sustainable Energy Policy and Strategy, Energy Monitoring and Management and Solar Energy Technology. These proceedings form an interesting and informative collection of papers, useful as a resource for further research, and a valuable source of information for those interested in the subject.
This book provides high-quality research results and proposes future priorities for more sustainable development and energy security. It covers a broad range of topics on atmospheric changes, climate change impacts, climate change modeling and simulations, energy and environment policies, energy resources and conversion technologies, renewables, emission reduction and abatement, waste management, ecosystems and biodiversity, and sustainable development. Gathering selected papers from the 7th Global Conference on Global Warming (GCGW2018), held in Izmir, Turkey on June 24-28, 2018, it: Offers comprehensive coverage of the development of systems taking into account climate change, renewables, waste management, chemical aspects, energy and environmental issues, along with recent developments and cutting-edge information Highlights recent advances in the area of energy and environment, and the debate on and shaping of future directions and priorities for a better environment, sustainable development and energy security Provides a number of practical applications and case studies Is written in an easy-to-follow style, moving from the basics to advanced systems. Given its scope, the book offers a valuable resource for readers in academia and industry alike, and can be used at the graduate level or as a reference text for professors, researchers and engineers.
This book highlights and reviews the renewable feed stock principle of green nanotechnology by focusing the use of plant-derived cardanol as a renewable starting material for the synthesis of advanced materials. The book presents the chemistry of cardanol and methods of isolation, covers macro and nano structures based on cardanol as well as potential applications of such materials. Future perspectives on cardanol based green nanotechnology are highlighted in the final chapter.
Electric power systems are experiencing significant changes at the worldwide scale in order to become cleaner, smarter, and more reliable. This edited book examines a wide range of topics related to these changes, which are primarily caused by the introduction of information technologies, renewable energy penetration, digitalized equipment, new operational strategies, and so forth. The emphasis will be put on the modeling and control of smart grid systems. The book addresses research topics such as high efficiency transforrmers, wind turbines and generators, fuel cells, or high speed turbines and generators.
More than 1.3 billion people worldwide lack access to electricity. Although extension of the electricity grid remains the preferred mode of electrification, off-grid electrification can offer a solution to such cases. "Rural Electrification through Decentralised Off-grid Systems in Developing Countries" provides a review of rural electrification experiences with an emphasis on off-grid electrification and presents business-related aspects including participatory arrangements, financing, and regulatory governance. Organized in three parts, "Rural Electrification through Decentralised Off-grid Systems in Developing Countries" provides comprehensive coverage and state-of-the art reviews which appraise the reader of the latest trend in the thinking. The first part presents the background information on electricity access, discusses the developmental implications of lack of electricity infrastructure and provides a review of alternative off-grid technologies. The second part presents a review of experiences from various regions (South Asia, China, Africa, South East Asia and South America). Finally, the third part deals with business dimensions and covers participatory business models, funding challenges for electrification and regulatory and governance issues. Based on the research carried out under the EPSRC/ DfID funded research grant for off-grid electrification in South Asia, "Rural Electrification through Decentralised Off-grid Systems in Developing Countries" provides a multi-disciplinary perspective of the rural electrification challenge through off-grid systems. Providing a practical introduction for students, this is also a key reference for engineers and governing bodies working with off-grid electrification. "
This book is a compilation of case studies from different countries and covers contemporary technologies including electric vehicles and solar thermal power plants. The book highlights the real-world situations facing individual projects and highlights the strengths and weaknesses of the underlying business propositions. It also sheds light on the factors that are routinely ignored during project formulation and risk assessment, namely coordination among public and private agencies, confirmed availability of relatively minor but essential components, possibility of concurrent demand for inputs from different project proponents, etc. The book provides a systematic 'guided tour' of renewable energy (RE) projects for potential project analysts and includes the development of financial models. It concludes with an evaluation of risk and the design of risk-mitigation measures. It is designed to simultaneously appeal to business school students and to serve as a guide for practicing executives, policy makers and consultants. The cases cover several countries, currencies, policy environments, technologies and resources and will help policy makers, consultants and project analysts and proponents view RE projects in a new light.
This book analyzes the effects of power generated by renewable energy sources, renewable energy production technologies, energy efficiency, and market regulation of carbon emissions. It elaborates on how these parameters have direct and indirect effects on carbon emission reduction, such as the results of an environmental tax that could directly reduce carbon emissions by decreasing fossil fuel consumption or by stimulating energy savings through technological innovation, as well as how renewable energy sources can affect both economic growth and the environment. In addition to a detailed analysis of the interrelationships between renewable energy consumption, production technology, and market regulation, The Development of Renewable Energy Sources and its Significance for the Environment proposes a model for measuring the effectiveness and results of the interaction between these links. Furthermore, a structure for a marketplace of renewable energy sources is put forward, as well as an outline of the requirements that must be met in order for this market to function. Suitable policy recommendations to enhance the market for renewable energies are also provided.
This book provides comprehensive coverage of Lithium (Li) metal anodes for rechargeable batteries. Li is an ideal anode material for rechargeable batteries due to its extremely high theoretical specific capacity (3860 mAh g-1), low density (0.59 g cm-3), and the lowest negative electrochemical potential ( 3.040 V vs. standard hydrogenelectrodes). Unfortunately, uncontrollable dendritic Li growth and limited Coulombic efficiency during Li deposition/stripping inherent in these batteries have prevented their practical applications over the past 40 years. With the emergence of post Liion batteries, safe and efficient operation of Li metal anodes has become an enabling technology which may determine the fate of several promising candidates for the next generation energy storage systems, including rechargeable Li-air batteries, Li-S batteries, and Li metal batteries which utilize intercalation compounds as cathodes. In this work, various factors that affect the morphology and Coulombic efficiency of Li anodes are analyzed. The authors also present the technologies utilized to characterize the morphology of Li deposition and the results obtained by modeling of Li dendrite growth. Finally, recent developments, especially the new approaches that enable safe and efficient operation of Li metal anodes at high current densities are reviewed. The urgent need and perspectives in this field are also discussed. The fundamental understanding and approaches presented in this work will be critical for the applicationof Li metal anodes. The general principles and approaches can also be used in other metal electrodes and general electrochemical deposition of metal films.
Focused on renewable energy systems and the development of information and communication technologies (ICTs) for their integration in smart grids, this book presents recent advances and methods that help to ensure that power generation from renewable sources remains stable, that power losses are minimized, and that the reliable functioning of these power generation units is maintained. The book highlights key topics and technologies for renewable energy systems including the intelligent control of power generators, power electronics that connect renewable power generation units to the grid, and fault diagnosis for power generators and power electronics. In particular, the following topics are addressed: * Modeling and control of power generators (PMSGs, DFIGs); * Modeling and control of power electronics (converters, inverters); * Modeling and fault diagnosis of the transmission and distribution Grid; and * Modelling and control of distributed power generation units (interconnected synchronous generators or photovoltaic units). Because of the above coverage, members of the wider engineering community will find that the nonlinear control and estimation methods presented provide essential insights into the functioning of renewable energy power systems, while the academic community will find the book a valuable textbook for undergraduate or graduate courses on renewable energy systems. |
You may like...
Generated Dynamics of Markov and Quantum…
Martin Janssen
Hardcover
Statistical Physics and Spatial…
Klaus R. Mecke, Dietrich Stoyan
Hardcover
R1,639
Discovery Miles 16 390
Toward Information Justice - Technology…
Jeffrey Alan Johnson
Hardcover
R3,081
Discovery Miles 30 810
Multidisciplinary Functions of…
Niaz Chowdhury, Ganesh Chandra Deka
Hardcover
R6,641
Discovery Miles 66 410
Advances and Applications in Chaotic…
Sundarapandian Vaidyanathan, Christos Volos
Hardcover
R4,121
Discovery Miles 41 210
Feature Extraction, Construction and…
Huan Liu, Hiroshi Motoda
Hardcover
R5,378
Discovery Miles 53 780
|