Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Alternative & renewable energy sources & technology
An authoritative guide to the most recent advances in statistical methods for quantifying reliability Statistical Methods for Reliability Data, Second Edition (SMRD2) is an essential guide to the most widely used and recently developed statistical methods for reliability data analysis and reliability test planning. Written by three experts in the area, SMRD2 updates and extends the long- established statistical techniques and shows how to apply powerful graphical, numerical, and simulation-based methods to a range of applications in reliability. SMRD2 is a comprehensive resource that describes maximum likelihood and Bayesian methods for solving practical problems that arise in product reliability and similar areas of application. SMRD2 illustrates methods with numerous applications and all the data sets are available on the book's website. Also, SMRD2 contains an extensive collection of exercises that will enhance its use as a course textbook. The SMRD2's website contains valuable resources, including R packages, Stan model codes, presentation slides, technical notes, information about commercial software for reliability data analysis, and csv files for the 93 data sets used in the book's examples and exercises. The importance of statistical methods in the area of engineering reliability continues to grow and SMRD2 offers an updated guide for, exploring, modeling, and drawing conclusions from reliability data. SMRD2 features: Contains a wealth of information on modern methods and techniques for reliability data analysis Offers discussions on the practical problem-solving power of various Bayesian inference methods Provides examples of Bayesian data analysis performed using the R interface to the Stan system based on Stan models that are available on the book's website Includes helpful technical-problem and data-analysis exercise sets at the end of every chapter Presents illustrative computer graphics that highlight data, results of analyses, and technical concepts Written for engineers and statisticians in industry and academia, Statistical Methods for Reliability Data, Second Edition offers an authoritative guide to this important topic.
The book presents a state-of-the-art in environmental aerodynamics and the structural design of wind energy support structures, particularly from a modern computational perspective. Examples include real-life applications dealing with pollutant dispersion in the building environment, pedestrian-level winds, comfort levels, relevant legislation and remedial measures. Design methodologies for wind energy structures include reliability assessment and code frameworks.
This book systematically explains the application principles and green processing technologies of industrial oil plant. Firstly, the industrial plant oil resources are elaborated as an independent discipline for systematic research. Secondly, it has laid a solid theoretical foundation for the utilization of industrial plant oil resources, and will greatly promote the development of industrialization and modernization of industrial plant oil resources worldwide. Thirdly, it constructs integrated technology system of oil plant cultivation, oil extraction technology and products application. Finally, it elaborates a series of environmental issues including the protection of biodiversity and the balance of the forest ecology during the industrial plant oil resources processing. The technological process for green conversion of industrial plant oil resources to the oil-based materials and high value products will be of particular interest to the readers among oil researchers, producers and managers.
In the past decade, there has been a substantial increase of grid-feeding photovoltaic applications, thus raising the importance of solar electricity in the energy mix. This trend is expected to continue and may even increase. Apart from the high initial investment cost, the fluctuating nature of the solar resource raises particular insertion problems in electrical networks. Proper grid managing demands short- and long-time forecasting of solar power plant output. "Weather modeling and forecasting of PV systems operation" is focused on this issue. Models for predicting the state of the sky, nowcasting solar irradiance and forecasting solar irradiation are studied and exemplified. Statistical as well as artificial intelligence methods are described. The efficiency of photovoltaic converters is assessed for any weather conditions. "Weather modeling and forecasting of PV systems operation" is
written for researchers, engineers, physicists and students
interested in PV systems design and utilization.
In order to avoid the potentially catastrophic impacts of global warming, the current 3% CO2 global emission growth rate must be transformed to a 1 to 3% declining rate, as soon as possible. This will require a rapid and radical transformation of the world s energy production and end use systems. The current generation of energy technologies are not capable of achieving the level of mitigation required. Next generations of renewable, low carbon generation and end use technologies will be needed. This book quantifies the mitigation challenge. It then considers the status of key technologies needed to protect the planet from serious climate change impact. Current and emerging technologies are characterized for their mitigation potential, status of development and potential environmental impacts. Power generation, mobile sources, industrial and building sectors are evaluated in detail. The importance and unique challenges for rapidly developing countries, such as China and India are discussed. Current global research and development efforts for key technologies are discussed. It is concluded that it will be necessary to substantially upgrade and accelerate the current worldwide RDD&D effort on both emerging energy technologies and those enabling technologies needed to improve mitigation effectiveness and economics. It will also be necessary to carefully evaluate the potential environmental characteristics of next generation technologies to avoid unacceptable health and ecological impacts. Finally, given the monumental technological challenge associated with transforming the world s energy system, geoengineering options are evaluated, since if successfully deployed, they have the potential to allow more time for the necessary energy system transformation. " This book on Climate Change not only gives a clear picture of the problem but suggests many of the pitfalls in solving it and recommends strongly, a research program to fill the gaps in our knowledge. It is a most useful reference book for all aspects of the problem. " William D. Ruckelshaus, Madrona Venture Group/Evergreen Venture"
The use of fossil fuels has generated an increasing amount of interest in renewable energy resources. Energy policies and management are of primary importance to achieve the development of sustainability and need to be consistent with recent advances in energy production and distribution. Challenges lie as much in the conversion from renewable energies such as wind and solar to useful forms like electricity, heat and fuel at an acceptable cost (including environmental damage) as in the integration of these resources into an existing infrastructure. This volume includes collaborative research between different disciplines, including materials, energy networks, new energy resources, storage solutions, waste to energy systems, smart grids and many other related subjects.
This book presents an ethnographic study of environmental Christian networks involved in the climate and transition towns movements. Maria Nita examines the ways in which green Christians engage with their communities and networks, as well as other activist networks in the broader green movement. The book interrogates key categories in the field of religious studies which intersect activist concerns, including spirituality, community, and ritual. In this sociological exploration the author uses existing research tools, such as discourse analysis, and proposes new theoretical models for the investigation of network expansion, religious identity, and relationality through ritual. Nita examines the mechanisms underlying the greening of religion and thus offers an in-depth analysis of prayers, rituals, and religious practices, such as praying through painting, fasting for the planet, and sharing the green Eucharist in or with nature.
This comprehensive book details the most recent advances in the microalgae biological sciences and engineering technologies for biomass and biofuel production in order to meet the ongoing need for new and affordable sources of food, chemicals and energy for future generations. The chapters explore new microalgae cultivation techniques, including solid (biofilm) systems, and heterotrophic production methods, while also critically investigating topics such as combining wastewater as a source of nutrients, the effect of CO2 on growth, and converting biomass to methane through anaerobic digestion. The book highlights innovative bioproduct optimization and molecular genetic techniques, applications of genomics and metabolomics, and the genetic engineering of microalgae strains targeting biocrude production. The latest developments in microalgae harvesting and dewatering technologies, which combine biomass production with electricity generation, are presented, along with detailed techno-economic modeling. This extensive volume was written by respected experts in their fields and is intended for a wide audience of researchers and engineers.
This book presents new application processes in the context of anaerobic digestion (AD), such as phosphorus recovery, microbial fuel cells (MFCs), and seaweed digestion. In addition, it introduces a new technique for the modeling and optimization of AD processes. Chapters 1 and 2 review AD as a technique for converting a range of organic wastes into biogas, while Chapter 3 discusses the recovery of phosphorus from anaerobically digested liquor. Chapters 4 and 5 focus on new techniques for modeling and optimizing AD. Chapters 6 and 7 then describe the state of the art in AD effluent treatment. The book's final three chapters focus on more recent developments, including microbial fuel cells (MFCs) (Chapter 8), seaweed production (Chapter 9), and enzyme technologies (Chapter 10).
Alternative Energy Sources is designed to give the reader, a clear view of the role each form of alternative energy may play in supplying the energy needs of the human society in the near future (20-50 years). The two first chapters on "energy demand and supply" and "environmental effects," set the tone as to why alternative energy is essential for the future. The third chapter gives the laws of energy conversion processes, as well as the limitations of converting one energy form to another. The section on exergy gives a quantitative background on the capability/potential of each energy source to produce power. The fourth, fifth and sixth chapters are expositions of fission and fusion nuclear energy, the power plants that may produce power from these sources and the issues that will frame the public debate on nuclear energy. The following five chapters include descriptions of the most common renewable energy sources (wind, solar, geothermal, biomass, hydroelectric) some of the less common sources (e.g. tidal and wave energy). The emphasis of these chapters will be on the global potential of each source, the engineering/technical systems that are used in harnessing the potential of each source, the technological developments that will contribute to wider utilization of the sources and environmental effects associated with their wider use. The last three chapters are: "energy storage," which will become an important issue if renewable energy sources are used widely. The fourteen chapters in the book have been chosen so that one may fit a semester University course around this book. At the end of every chapter, there are 10-20 problems and 1-3 suggestions of semester projects that may be assigned to students for further research.
The aim of this book is to provide a comprehensive overview of the fundamentals and engineering of high concentrator photovoltaic (HCPV) technology and to elucidate how this complex and emerging technology is applied in power plants. It is the first of its kind to focus exclusively on HCPV technology and offers a valuable reference volume to readers. This book is the result of an international collaboration among experts and each chapter is written by a specialist in the field. The conversion of solar energy to electricity plays an important role in power generation and HCPV is signalled by many researchers and professionals as one of the most promising sources of solar power. Therefore this book provides an important resource for companies, research institutes and universities to assist with the understanding of fundamentals, different applications and potential of such technology.
"Algae are mysterious and fascinating organisms that hold great potential for discovery and biotechnology." -Dr. Thierry Tonon, Department of Biology, University of York "Science is a beautiful gift to humanity; we should not distort it." -A.P.J. Abdul Kalam In this book, we emphasise the importance of algal biotechnology as a sustainable platform to replace the conventional fossil-based economy. With this focus, Volume 2 summarizes up-to-date literature knowledge and discusses the advances in algal cultivation, genetic improvement, wastewater treatment, resource recovery, commercial operation, and technoeconomic analysis of algal biotechnology. FEATURES Discusses in detail recent developments in algae cultivation and biomass harvesting Provides an overview of genetic engineering and algal-bacteria consortia to improve productivity Presents applications of algae in the area of wastewater treatment and resource recovery Provides case studies and technoeconomic analysis to understand the algal biorefinery Shashi Kant Bhatia, PhD, is an Associate Professor in the Department of Biological Engineering, Konkuk University, Seoul, South Korea. Sanjeet Mehariya, PhD, is a Postdoctoral Researcher in the Department of Chemistry, Umea University, Umea, Sweden. Obulisamy Parthiba Karthikeyan, PhD, is a Research Scientist and Lecturer (Adjunct) in the Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA.
This book provides the latest research on a new alternative form of technology, the magnetocaloric energy conversion. This area of research concerns magnetic refrigeration and cooling, magnetic heat pumping and magnetic power generation. The book's systematic approach offers the theoretical basis of magnetocaloric energy conversion and its various sub domains and this is supported with the practical examples. Besides these fundamentals, the book also introduces potential solutions to engineering problems in magnetocalorics and to alternative technologies of solid state energy conversion. The aim of the book is therefore to provide engineers with the most up-to-date information and also to facilitate the understanding, design and construction of future magnetocaloric energy conversion devices. The magnetocaloric energy conversion represents an alternative to compressor based refrigerators and heat pumps. It is a serious alternative to power generation with low enthalpy heat sources. This green technology offers an opportunity to use environmentally friendly solid refrigerants and the potentially high energy efficiency follows the trends of future energy conversion devices. This book is intended for postgraduate students and researchers of refrigeration, heat pumping, power generation alternatives, heat regenerators and advanced heat transfer mechanisms.
This book does not give a prediction of what the efficiency will be of the energy use of industrial processes in the future. However, it does give an exploration of limits to the efficiency of current processes and an indication of what might be achieved if new technologies can be developed. At the Department of Science, Technology and Society of Utrecht University research had been done to the opportunities for improvement of the energy efficiency in the short term since the 1980's. This had resulted in a comprehensive database on energy efficient measures. This database and a possible application are described in Chapter 3 of this book. The use of the database induced new research themes around efficiency improvement, e.g. concerning barriers for implementation of measures. It was around 1993 that I did a preliminary study to the potential for efficiency improvement in the long term. Historical analysis had shown us that the short term potential stayed constant over the years. It seemed to be replenished by the introduction of new technologies. This lead to the question whether there are limits to the efficiency, taking into account both thermodynamic considerations and ideas on the development and dissemination of new technologies.
Power Generation from Solid Fuels introduces the different technologies to produce heat and power from solid fossil (hard coal, brown coal) and renewable (biomass, waste) fuels, such as combustion and gasification, steam power plants and combined cycles etc. The book discusses technologies with regard to their efficiency, emissions, operational behavior, residues and costs. Besides proven state of the art processes, the focus is on the potential of new technologies currently under development or demonstration. The main motivation of the book is to explain the technical possibilities for reducing CO2 emissions from solid fuels. The strategies which are treated are: more efficient power and heat generation technologies, processes for the utilisation of renewable solid fuels, such as biomass and waste, and technologies for carbon capture and storage. Power Generation from Solid Fuels provides, both to academia and industry, a concise treatment of industrial combustion of all types of solid, hopefully inspiring the next generation of engineers and scientists.
The issue of nuclear energy excites strong emotions and there are widely differing views as to whether nuclear power can or should make a major contribution to reducing greenhouse gas emissions. With the nuclear issue back on the agenda worldwide, this highly topical collection steers a path through these controversies, presenting the views of proponents of nuclear expansion, examining the challenges that face them and exploring the arguments of those who support alternative approaches.
This book provides an in-depth economic analysis of the challenges associated with bioenergy use and production. Drawing on New Institutional Economics and the theory of economic policy, it develops theory-based recommendations for a bioenergy policy that strives for efficiency and sustainability. Further, it shows how to deal with diverse uncertainties and constraints, such as institutional path dependencies, transaction costs, multiple and conflicting policy aims, and interacting market failures, while also applying the resulting theoretical insights to a case study analysis of Germany's bioenergy policy. As such, the book aims to bridge the gap between practical bioenergy policymaking on the one hand, and neoclassical theory-based concepts that strictly focus on a minimization of greenhouse gas mitigation costs on the other.
This book summarizes the results of an international research project; the first Europe-wide Delphi study on future developments in the energy sector (EurEnDel). Nearly 700 energy experts from 48 countries participated in this two-round, web-based Delphi exercise. With a time horizon of 2030, this expert survey not only provides a useful perspective on long-term developments of energy technologies, but also evaluates these technologies against different sets of social values or "visions."
Bioenergy from Sustainable Forestry synthesizes information needed to design or implement sustainable forest management systems for production of biomass for energy in conjunction with other forest products. It is organized around the criteria for sustainable forest management: productivity, environment, social issues, economics, and legal and institutional framework. More than 25 international experts from 10 countries have brought together available ecological, physical, operational, social and economic information and identified gaps in knowledge related to biomass production and harvesting systems. This is the first time that such comprehensive information has been brought together under one cover, using an integrated, holistic approach. Guiding principles and state of the art knowledge are emphasized. The book will enable forest resource managers and planners to evaluate the ability of specific forest regions to sustainably meet bioenergy production demands.
Troy Townsend's thesis explores the structure, energetics and activity of three inorganic nanocrystal photocatalysts. The goal of this work is to investigate the potential of metal oxide nanocrystals for application in photocatalytic water splitting, which could one day provide us with clean hydrogen fuel derived from water and solar energy. Specifically, Townsend's work addresses the effects of co-catalyst addition to niobium oxide nanotubes for photocatalytic water reduction to hydrogen, and the first use of iron oxide 'rust' in nanocrystal suspensions for oxygen production. In addition, Townsend studies a nickel/oxide-strontium titanate nanocomposite which can be described as one of only four nanoscale water splitting photocatalysts. He also examines the charge transport for this system. Overall, this collection of studies brings relevance to the design of inorganic nanomaterials for photocatalytic water splitting while introducing new directions for solar energy conversion.
Photovoltaic generation is one of the cleanest forms of energy conversion available. One of the advantages offered by solar energy is its potential to provide sustainable electricity in areas not served by the conventional power grid. Optimisation of Photovoltaic Power Systems details explicit modelling, control and optimisation of the most popular stand-alone applications such as pumping, power supply, and desalination. Each section is concluded by an example using the MATLAB (R) and Simulink (R) packages to help the reader understand and evaluate the performance of different photovoltaic systems. Optimisation of Photovoltaic Power Systems provides engineers, graduate and postgraduate students with the means to understand, assess and develop their own photovoltaic systems. As such, it is an essential tool for all those wishing to specialise in stand-alone photovoltaic systems. Optimisation of Photovoltaic Power Systems aims to enable all researchers in the field of electrical engineering to thoroughly understand the concepts of photovoltaic systems; find solutions to their problems; and choose the appropriate mathematical model for optimising photovoltaic energy.
In recent years the concept of energy has been revised and a new model based on the principle of sustainability has become more and more pervasive. The appraisal of energy technologies and projects is complex and uncertain as the related decision making has to encompass environmental, technical, economic and social factors and information sources. The scientific procedure of assessment has a vital role as it can supply the right tools to evaluate the actual situation and make realistic forecasts of the effects and outcomes of any actions undertaken. "Assessment and Simulation Tools for Sustainable Energy Systems" offers reviews of the main assessment and simulation methods used for effective energy assessment. Divided across three sections, "Assessment and Simulation Tools for Sustainable Energy Systems" develops the reader s ability to select suitable tools to support decision making and implementation of sustainable energy projects. The first is dedicated to the analysis of theoretical foundations and applications of multi-criteria decision making. This is followed by chapters concentrating on the theory and practice of fuzzy inference, neural nets and algorithms genetics. Finally, simulation methods such as Monte Carlo analysis, mathematical programming and others are detailed. This comprehensive illustration of these tools and their application makes "Assessment and Simulation Tools for Sustainable Energy Systems" a key guide for researchers, scientists, managers, politicians and industry professionals developing the field of sustainable energy systems. It may also prompt further advancements in soft computing and simulation issues for students and researchers."
This book discusses the supervision of hybrid systems and presents models for control, optimization and storage. It provides a guide for practitioners as well as graduate and postgraduate students and researchers in both renewable energy and modern power systems, enabling them to quickly gain an understanding of stand-alone and grid-connected hybrid renewable systems. The book is accompanied by an online MATLAB package, which offers examples of each application to help readers understand and evaluate the performance of the various hybrid renewable systems cited. With a focus on the different configurations of hybrid renewable energy systems, it offers those involved in the field of renewable energy solutions vital insights into the control, optimization and supervision strategies for the different renewable energy systems.
This volume represents the proceedings of the First International Conference on S- tainability in Energy and Buildings, SEB'09, held in the City of Brighton and Hove in the United Kingdom, organised by KES International with the assistance of the World Renewable Energy Congress / Network, and hosted by the University of Brighton. KES International is a knowledge transfer organisation providing high-quality c- ference events and publishing opportunities for researchers. The KES association is a community consisting of several thousand research scientists and engineers who p- ticipate in KES activities. For over a decade KES has been a leader in the area of Knowledge Based and Intelligent information and Engineering Systems. Now KES is starting to make a contribution in the area of Sustainability and Renewable Energy with this first conference specifically on renewable energy and its application to - mestic and other buildings. Sustainability in energy and buildings is a topic of - creasing interest and importance on the world agenda. We therefore hope and intend that this first SEB event may grow and evolve into a conference series. KES International is a member of the World Renewable Energy Congress / N- work which is Chaired by Professor Ali Sayigh. We are grateful to Professor Sayigh for the collaboration and assistance of WREC/N in the organisation of SEB'09. We hope to continue to work with WREC/N in the future on projects of common interest. |
You may like...
Green Technologies for the Environment
Sherine Obare, Rafael Luque
Hardcover
R5,414
Discovery Miles 54 140
Optimization and Decision-Making in the…
Figen Balo, Manavalan Saravanan, …
Hardcover
R7,022
Discovery Miles 70 220
|