![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Alternative & renewable energy sources & technology
Fundamentals of Wind Farm Aerodynamic Layout Design, Volume Four provides readers with effective wind farm design and layout guidance through algorithm optimization, going beyond other references and general approaches in literature. Focusing on interactions of wake models, designers can combine numerical schemes presented in this book which also considers wake models' effects and problems on layout optimization in order to simulate and enhance wind farm designs. Covering the aerodynamic modeling and simulation of wind farms, the book's authors include experimental tests supporting modeling simulations and tutorials on the simulation of wind turbines. In addition, the book includes a CFD technique designed to be more computationally efficient than currently available techniques, making this book ideal for industrial engineers in the wind industry who need to produce an accurate simulation within limited timeframes.
Integrated Wastewater Management and Valorization using Algal Cultures provides a holistic view on coupled wastewater treatment and biomass production for energy and value-added products using algal cultures. Algal cultures provide low-cost nutrient (nitrogen and phosphorus) treatment and recovery from wastewaters, carbon-dioxide sequestration from waste gases, value-added generation in the form of bio-energy and bio-based chemicals, biosorption of heavy metals and biogas upgrading. The book addresses all these aspects in terms of role of algal cultures in environmental sustainability and circular economy. The production of high value products is addressed through pretreatment and anaerobic co-digestion of wastewater-derived microalgal biomass and microalgal biorefineries. The simultaneous dissolution and uptake of nutrients in microalgal treatment of anaerobic digestate is discussed, as is coupled electrocoagulation and algal cultivation for the treatment of anaerobic digestate and algal biomass production. Finally, optimization of algal biomass production is discussed using metagenomics and machine learning tools, and scale-up potential and the limitations of integrated wastewater-derived microalgal biorefineries is discussed. Integrated Wastewater Management and Valorization using Algal Cultures offers an integrated resource on wastewater treatment, biomass production, bioenergy and value-added product generation for researchers in bioenergy and renewable energy, environmental science and wastewater treatment, as well as environmental and chemical engineering.
Hydrogen Safety for Energy Applications: Engineering Design, Risk Assessment, and Codes and Standards presents different aspects of contemporary knowledge regarding the hazards, risks and safety connected with hydrogen systems. Sections cover the main hydrogen technologies and explore the scientific aspects of possible sources and consequences of accidental events that can occur when hydrogen is used, including in its vehicular applications. Risk assessment, as well as the safety measures/safety barriers applicable in such situations are also considered. Finally, a short survey concerning legal aspects is presented.
Technologies for Solar Thermal Energy: Theory, Design and Optimization presents concepts surrounding industrial process heat and thermal power generation, including detailed theory and practical considerations for design, performance analysis, and economic assessments. Addressing the significance of power generation from solar thermal energy, the book covers the different power cycles for solar thermal power plant and comparison analysis, along with the advantages of solar thermal power systems compared with photovoltaic systems, corresponding energy storage technology, working materials, and the design method of a solar thermal power plant. This book is most valuable for lecturers, postgraduate and undergraduate students who will benefit from technological advances. In addition, researchers and engineers can use this book for modern theories and design aspects to enhance knowledge and conduct research in the field of solar thermal energy.
Waste and Biodiesel: Feedstocks and Precursors for Catalysts is a comprehensive reference on waste material utilization at various stages of the biodiesel production process. The book discusses the technologies for converting cooking oil and waste animal fats to biodiesel, along with the efficacy of municipal waste derived lipids in biodiesel production. The use of wastewater-grown microalgae feedstock, oleaginous fungi, bacteria and yeast produced using waste substrate are also discussed. The use of various catalysts is addressed, including CaO derived from waste shell materials, fish and animal waste, inorganic waste materials like red mud and cement waste, and whole cell enzymes using waste substrate. Each chapter addresses the challenges of high production costs at a pilot and industrial scale, offering methods of cost reduction and waste remediation. This book is a valuable resource for researchers and industry professionals in environmental science, energy and renewable energy.
Sustainable Networks in Smart Grid presents global challenges in smart metering with renewable energy resources, micro-grid design, communication technologies, big data, privacy and security in the smart grid. Providing an overview of different available PLC technologies and configurations and their applications in different sectors, this book provides case studies and practical implementation details of smart grid technology, paying special attention to Advanced Metering Infrastructure (AMI) scenarios with the presence of Distribution Grid (DG) and Electric Vehicles (EV). Covering regulatory policies for energy storage, management strategies for microgrid operation, and key performance indicators for smart grid development, this reference compiles up-to-date information on different aspects of the Internet of Smart Metering. In addition, innovative contributions on Data Analytics, Energy Theft Detection, Data-Driven Framework, Blockchain-IoT-enabled Sensor Networks, and Smart Contacts in the Blockchain are also included.
Wind power is a pillar of low emission energy systems. Designing more efficient wind turbines and farms, and increasing reliability and flexibility, is an area of intense research and development. In order to overcome the intermittent character of wind power, both the individual turbines and the wind farm as a whole must be considered. Many recent advances have been achieved in multiple aspects of utility-scale wind power. This structured research review conveys recent progress, with chapters written by an international team of experts. Organized into five parts, the book covers the aerodynamics of turbines and farms including layout; control techniques; environmental concerns including noise and bird and bat collisions; the intermittency issue including forecasting, storage and hybrid wind-PV plants; and offshore wind farms. From the general principles of aerodynamics to detailed and systematic coverage of the latest developments, Utility-scale Wind Turbines and Wind Farms provides a convenient and up-to-date source of information for academic researchers and R&D professionals working in this field.
Production of Biodiesel from Non-Edible Sources: Technological Updates offers a step-by-step guide to the production of biodiesel, providing comparisons of existing methods, new and state-of-the-art technologies, and real-world examples of implementation. The book discusses all potential non-edible feedstocks for biodiesel production, providing their properties, availability, and processing, including deeper insights into kinetic models and simulation of biodiesel fermentation. Readers will gain knowledge of existing parameters and methods for biodiesel production, optimization, scale-up, and sustainability, along with guidance on the practical implementation of these methods and techniques. Finally, environmental sustainability, techno-economic analysis, and policymaking aspects are considered and put into the context of future prospects. This book offers a step-by-step guide for researchers and industry practitioners involved in bioenergy, renewable energy, biofuels production and bioconversion processes.
The support for polygeneration lies in the possibility of integrating different technologies into a single energy system, to maximize the utilization of both fossil and renewable fuels. A system that delivers multiple forms of energy to users, maximizing the overall efficiency makes polygeneration an emerging and viable option for energy consuming industries. Polygeneration Systems: Design, Processes and Technologies provides simple and advanced calculation techniques to evaluate energy, environmental and economic performance of polygeneration systems under analysis. With specific design guidelines for each type of polygeneration system and experimental performance data, referred both to single components and overall systems, this title covers all aspects of polygeneration from design to operation, optimization and practical implementation. Giving different aspects of both fossil and non-fossil fuel based polygeneration and the wider area of polygeneration processes, this book helps readers learn general principles to specific system design and development through analysis of case studies, examples, simulation characteristics and thermodynamic and economic data.
Silicon Anode Systems for Lithium-Ion Batteries is an introduction to silicon anodes as an alternative to traditional graphite-based anodes. The book provides a comprehensive overview including abundance, system voltage, and capacity. It provides key insights into the basic challenges faced by the materials system such as new configurations and concepts for overcoming the expansion and contraction related problems. This book has been written for the practitioner, researcher or developer of commercial technologies.
Handbook of Algal Biofuels: Aspects of Cultivation, Conversion and Biorefinery comprehensively covers the cultivation, harvesting, conversion, and utilization of microalgae and seaweeds for different kinds of biofuels. The book addresses four main topics in the algal biofuel value-chain. First, it explores algal diversity and composition, covering micro- and macroalgal diversity, classification, and composition, their cultivation, biotechnological applications, current use within industry for biofuels and value-added products, and their application in CO2 sequestration, wastewater treatment, and water desalination. Next, the book addresses algal biofuel production, presenting detailed guidelines and protocols for different production routes of biodiesel, biogas, bioethanol, biobutanol, biohydrogen, jet fuel, and thermochemical conversation methods. Then, the authors discuss integrated approaches for enhanced biofuel production. This includes updates on the recent advances, breakthroughs, and challenges of algal biomass utilization as a feedstock for alternative biofuels, process intensification techniques, life cycle analysis, and integrated approaches such as wastewater treatment with CO2 sequestration using cost-effective and eco-friendly techniques. In addition, different routes for waste recycling for enhanced biofuel production are discussed alongside economic analyses. Finally, this book presents case studies for algal biomass and biofuel production including BIQ algae house, Renewable Energy Laboratory project, Aquatic Species Program, and the current status of algal industry for biofuel production. Handbook of Algal Biofuels offers an all-in-one resource for researchers, graduate students, and industry professionals working in the areas of biofuels and phycology and will be of interest to engineers working in renewable energy, bioenergy, alternative fuels, biotechnology, and chemical engineering. Furthermore, this book includes structured foundational content on algae and algal biofuels for undergraduate and graduate students working in biology and life sciences.
Recent Advances in Renewable Energy Technologies is a comprehensive reference covering critical research, laboratory and industry developments on renewable energy technological, production, conversion, storage, and management, including solar energy systems (thermal and photovoltaic), wind energy, hydropower, geothermal energy, bioenergy and hydrogen production, and large-scale development of renewable energy technologies and their impact on the global economy and power capacity. Technological advancements include resources assessment and deployment, materials performance improvement, system optimization and sizing, instrumentation and control, modeling and simulation, regulations, and policies. Each modular chapter examines recent advances in specific renewable energy systems, providing theoretical and applied aspects of system optimization, control and management and supports them with global case studies demonstrating practical applications and economical and environmental aspects through life cycle analysis. The book is of interest to engineering graduates, researchers, professors and industry professionals involved in the renewable energy sector and advanced engineering courses dealing with renewable energy, sources, thermal and electrical energy production and sustainability.
In this new edition of "Renewable Energy Systems," globally recognized renewable energy researcher and professor, Henrik Lund, sets forth a straightforward, comprehensive methodology for comparing different energy systems abilities to integrate fluctuating and intermittent renewable energy sources. The book does this by presenting an energy system analysis methodology and offering a freely available accompanying software tool, EnergyPLAN, which automates and simplifies the calculations supporting such a detailed comparative analysis. The bookprovides the results of more than fifteen comprehensive energy system analysis studies, examinesthe large-scale integration of renewable energy into the present system, and presents concrete design examples derived from a dozen renewable energy systems around the globe. "Renewable Energy Systems, Second Edition" also undertakes the socio-political realities governing the implementation of renewable energy systems by introducing a theoretical framework approach aimed at understanding how major technological changes, such as renewable energy, can be implemented at both the national and international levels. Provides an introduction to the technical design of renewable
energy systemsDemonstrates how to analyze the feasibility and
efficiency of large-scale systems to help implementers avoid costly
trial and errorAddresses the socio-political challenge of
implementing the shift to renewables Free companion analysis
software empowers energy professionals to crunch data for their own
projectsFeatures a dozen extensive case studies from around the
globe that provide real-world templates for new installations
Innovative Energy Conversion from Biomass Waste offers a new approach to optimizing energy recovery from waste using thermochemical conversion. Instead of conventional pinch technology, the book proposes integrated systems employing exergy recovery and process integration technologies to minimize exergy loss due to entropy generation. This innovative approach is demonstrated in three case studies using high-potential low-rank fuels from industrial waste products with high moisture content, high volatile matter, and high hemicellulose content. From these case studies, readers are provided with three different examples of biomass type, pre-treatment route, and conversion, from fruit bunch cofired within existing coal power plants, black liquor in a stand-alone system, and rice waste processing integrated into existing agricultural systems. Innovative Energy Conversion from Biomass Waste is a valuable resource for researchers and practitioners alike, and will be of interest to environmental scientists, biotechnologists, and chemical engineers working in waste-to-energy and renewable energy.
Sustainable Design for Renewable Processes: Principles and Case Studies covers the basic technologies to collect and process renewable resources and raw materials and transform them into useful products. Starting with basic principles on process analysis, integration and optimization that also addresses challenges, the book then discusses applied principles using a number of examples and case studies that cover biomass, waste, solar, water and wind as resources, along with a set of technologies including gasification, pyrolysis, hydrolysis, digestion, fermentation, solar thermal, solar photovoltaics, electrolysis, energy storage, etc. The book includes examples, exercises and models using Python, Julia, MATLAB, GAMS, EXCEL, CHEMCAD or ASPEN. This book shows students the challenges posed by renewable-based processes by presenting fundamentals, case studies and step-by-step analyses of renewable resources. Hence, this is an ideal and comprehensive reference for Masters and PhD students, engineers and designers.
Advances in Bioenergy, Volume Six in this ongoing series, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. New sections in this release include Microalgae wastewater treatment and biomass utilization, Lipid Metabolism and Metabolic Engineering of Eukaryotic Microalgae, Aquaculture, Microalgae Cultivation, Life Cycle Assessment, Integration of algae cultivation with anaerobic digestion, Bioenergy and Bioproducts from Industry Hemp, Integration of algae to anaerobic digestion for biofuel and bioenergy production, and more.
A Thermo-Economic Approach to Energy From Waste provides readers with the tools to analyze the effectiveness of biomass waste conversion into value-added products and how thermochemical conversion methods can be commercialized with minimum environmental impact. The book provides a comprehensive overview of biomass conversion technologies through pyrolysis, including the types of reactors available, reactor mechanisms, and the upgradation of bio-oil. Case studies are provided on waste disposal in selected favelas (slums) of Rio de Janeiro, including data on subnormal clusters and analyses of solid waste in the 37 slums of Catumbi. Step-by-step guidance is provided on how to use a life cycle assessment (LCA) approach to analyze the potential impact of various waste-to-energy conversion technologies, and a brief overview of the common applications of LCA in other geographical locations is presented, including United States, Europe, China, and Brazil. Finally, waste-to-value-added functional catalysts for the transesterification process in biodiesel production are discussed alongside various other novel technologies for biodiesel production, process simulation, and techno-economic analysis of biodiesel production. Bringing together research and real-world case studies from an LCA perspective, the book provides an ideal reference for researchers and practitioners interested in waste-to-energy conversion, LCA, and the sustainable production of bioenergy.
Comprehensive Guide on Organic and Inorganic Solar Cells: Fundamental Concepts to Fabrication Methods is a one-stop, authoritative resource on all types of inorganic, organic and hybrid solar cells, including their theoretical background and the practical knowledge required for fabrication. With chapters rigorously dedicated to a particular type of solar cell, each subchapter takes a detailed look at synthesis recipes, deposition techniques, materials properties and their influence on solar cell performance, including advanced characterization methods with materials selection and experimental techniques. By addressing the evolution of solar cell technologies, second generation thin-film photovoltaics, organic solar cells, and finally, the latest hybrid organic-inorganic approaches, this book benefits students and researchers in solar cell technology to understand the similarities, differences, benefits and challenges of each device.
Waste-to-Energy Approaches Towards Zero Waste: Interdisciplinary Methods of Controlling Waste provides a comprehensive overview of the key technologies and approaches to achieve zero waste from energy. The book emphasizes the importance of an integrated approach to waste-to-energy using fundamental concepts and principles, and presents key methods, their applications, and perspectives on future development. The book provides readers with the tools to make key decisions on waste-to-energy projects from zero-waste principles, while incorporating sustainability and life cycle assessments from financial and environmental perspectives. Waste-to-Energy Approaches Towards Zero Waste: Interdisciplinary Methods of Controlling Waste offers practical guidance on achieving energy with zero waste ideal for researchers and graduate students involved in waste-to-energy and renewable energy, waste remediation, and sustainability.
Handbook of Biofuels looks at the many new developments in various type of bioenergy, along with the significant constraints in their production and/or applications. Beyond introducing current approaches and possible future directions of research, this title covers sources and processing of raw materials to downstream processing, constraints involved and research approaches to address and overcome these needs. Different combinations of products from the biorefinery are included, along with the material to answer questions surrounding the optimum process conditions for conversion of different feedstocks to bioenergy, the basis for choosing conversion technology, and what bioenergy products make economic sense. With chapters on the techno-economic analysis of biofuel production and concepts and step-by-step approaches in bioenergy processing, the objective of this book is to present a comprehensive and all-encompassing reference about bioenergy to students, teachers, researchers and professionals.
Water and Thermal Management of Proton Exchange Membrane Fuel Cells introduces the main research methods and latest advances in the water and thermal management of PEMFCs. The book introduces the transport mechanism of each component, including modeling methods at different scales, along with practical exercises. Topics include PEMFC fundamentals, working principles and transport mechanisms, characterization tests and diagnostic analysis, the simulation of multiphase transport and electrode kinetics, cell-scale modeling, stack-scale modeling, and system-scale modeling. This volume offers a practical handbook for researchers, students and engineers in the fields of proton exchange membrane fuel cells. Proton exchange membrane fuel cells (PEMFCs) are high-efficiency and low-emission electrochemical energy conversion devices. Inside the PEMFC complex, physical and chemical processes take place, such as electrochemical reaction, multiphase flow and heat transfer. This book explores these topics, and more.
Sustainable production of hydrocarbon biofuels from biomass, fuels that are fully compatible with existing internal combustion engines, will allow the global transport economy to transition to a sustainable energy source without the need for capital-intensive new infrastructures. Hydrocarbon Biorefinery: Sustainable Processing of Biomass for Hydrocarbon Biofuels presents a comprehensive and easy to understand consolidation of existing knowledge for the production of hydrocarbon biofuels from biomass. Three major areas for the conversion of biomass to hydrocarbon biofuels are addressed: i) Chemical and thermochemical conversion processes, ii) Biological and biochemical conversion processes, and iii) Conversion processes of biomass-derived compounds. Additionally, the book includes process design, life cycle analysis of various processes, reaction engineering, catalysts, process conditions and process concepts, and is supported with detailed case studies. The economic viability of each process is specifically addressed to provide a clear guide for the economic development of future hydrocarbon biofuels. Hydrocarbon Biorefinery: Sustainable Processing of Biomass for Hydrocarbon Biofuels offers an all-in-one resource for researchers, graduate students, and industry professionals working in the area of bioenergy and will be of interest to energy engineers, chemical engineers, bioengineers, chemists, agricultural researchers, and mechanical engineers. Furthermore, this book provides structured foundational content on biorefineries for undergraduate and graduate students.
Renewable and Alternative Energy Resources provides comprehensive information on the status of all renewable and non-renewable energy resources. Chapters discuss the technological developments and environmental impacts of each energy source, giving a valuable reference of up-to-date scientific progress, technical application and comparative ecological analysis of each source. In addition to understanding the process involved in generating energy, the book looks at possible merits and demerits relevant to environmental problems, highlighting the importance of the implementation of sustainable, approachable, cost effective and durable renewable energy resources. Designed to highlight relevant concepts on energy efficiency, current technologies and ongoing industrial trends, this is an ideal reference source for academics, practitioners, professionals and upper-level students interested in the latest research on renewable energy. |
You may like...
English Country Houses - Forty-five…
William 1819-1901 Architect Wilkinson
Hardcover
R807
Discovery Miles 8 070
The Historic Core of Los Angeles
Curtis C. Roseman, Ruth Wallach, …
Paperback
The Modern Home - a Book of British…
Walter Shaw 1862-1940 Sparrow, William Henry Bidlake, …
Hardcover
R862
Discovery Miles 8 620
Radford's Artistic Bungalows - Unique…
Radford Architectural Company
Hardcover
R835
Discovery Miles 8 350
|