![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering
This consolidated reference book addresses the various aspects of nano biomaterials used in ophthalmic drug delivery, including their characterization, interactions with ophthalmic system and applications in treatments of the ophthalmic diseases and disorders. In the last decade, a significant growth in polymer sciences, nanotechnology and biotechnology has resulted in the development of new nano- and bioengineered nano-bio-materials. These are extensively explored as drug delivery carriers as well as for implantable devices and scaffolds. At the interface between nanomaterials and biological systems, the organic and synthetic worlds merge into a new science concerned with the safe use of nanotechnology and nano material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions. While it is impossible to describe with certainty all the bio physicochemical interactions at play at the interface, we are at a point where the pockets of assembled knowledge are providing a conceptual framework to guide this exploration, and review the impact on future product development. The book is intended as a valuable resource for academics and pharmaceutical scientists working in the field of polymers, polymers materials for drug delivery, drug delivery systems and ophthalmic drug delivery systems, in addition to medical and health care professionals in these areas.
The development of sustainable and renewable biofuels is attracting growing interest. It is vital to develop robust microbial strains for biocatalysts that are able to function under multiple stress conditions. This Microbiology Monograph provides an overview of methods for studying microbial stress tolerance for biofuels applications using a systems biology approach. Topics covered range from mechanisms to methodology for yeast and bacteria, including the genomics of yeast tolerance and detoxification; genetics and regulation of glycogen and trehalose metabolism; programmed cell death; high gravity fermentations; ethanol tolerance; improving biomass sugar utilization by engineered Saccharomyces; the genomics on tolerance of Zymomonas mobilis; microbial solvent tolerance; control of stress tolerance in bacterial host organisms; metabolomics for ethanologenic yeast; automated proteomics work cell systems for strain improvement; and unification of gene expression data for comparable analyses under stress conditions.
This book presents an overview of the ways in which the latest experimental and theoretical nanotechnologies are serving the fields of biotechnology, medicine, and biomaterials. They not only enhance the efficiency of common therapeutics and lower their risks, but thanks to their specific properties, they also provide new capabilities. Nano-scale measurement techniques, such as nano-indentation and nano-scratch methods, could potentially be used to characterize the physical and mechanical properties of both natural tissues and synthetic biomaterials in terms of strength and durability.
The coupling of biological and electronic systems has in the past few years emerged as a field of increasing importance. Achievements like the cardiac pacemaker have paved the way for more sophisticated approaches, such as the lab-on-a-chip and DNA computers. This book presents reviews on some of the most promising projects in this interdisciplinary research field, covering topics from bioinformatics to biosensor technology.
Altogether, the biochemical, technical and economic limitations on existing proka- otic and eukaryotic expression systems and the growing clinical demand for complex therapeutic proteins have created substantial interest in developing new expression systems for the production of therapeutic proteins. To that end, plants have emerged in the past decade as a suitable alternative to the current production systems, and today their potential for production of high quality, much safer and biologically active complex recombinant pharmaceutical proteins is largely documented. The chapters in this volume, contributed by leaders in the field, sum up the state-- the-art methods for using a variety of different plants as expression hosts for phar- ceutical proteins. Several production platforms are presented, ranging from seed- and leaf-based production in stable transgenic plant lines, to plant cell bioreactors, to viral or Agrobacterium-mediated transient expr ession systems. Currently, antibodies and their derived fragments represent the largest and most important group of biote- nological products in clinical trials. This explains why the potential of most prod- tion platforms is illustrated here principally for antibodies or antibody fragments with acknowledged potential for immunotherapy in humans. In addition, a comparison of different plant expression systems is presented using aprotinin, a commercial phar- ceutical protein, as a test system. Although multiple books and monographs have been recently published on mol- ular pharming, there is a noticeable dearth of bench step-by-step protocols that can be used quickly and easily by beginners entering this new field.
There is hardly any technical library in the world in which the volumes of the Chemical Formulary (Volumes 1-34) do not occupy a prominent place. Chemists both experienced and beginner, continually refer to them. Volume 34 counts numerous experts among it's contributors, such as Editor-in-chief H. Bennett. It does not duplicate any of the formulas included in previous volumes, but lists a wide array of modern and salable products from all branches of the chemical industries. An excellent reference for formulation problems.
8 11/16 X 11 1/4 in Foreword - What is Biotechnology Today? (Leroy Hood, The Institute for S ystems Biology, Seattle, WA, USA) Rapid translation system: a novel cell-free way from gene to protein (M. Hoffmann, C. Nem etz). Protein expression and refolding - a practi cal guide to getting the most out of inclusion bodies (L.D. Cabrita, S. Bottomley). Towards a systems biology understandi ng of human health: interplay between genotype, environment and nutritio n. Public health issues related with the consumpt ion of food obtained from genetically modified organisms (A. Paparini, V . Romano-Spica). p75 neurotrophin receptor signal ing in the nervous system (Y. Hasegawa et al.). P hage display for epitope determination: a paradigm for identifying recep tor-ligand interactions (M.J. Rowley, K. O'Connor, L. Wijeyewickrema). < /LI> DNA vaccines and their application against parasit es - promise, limitations and potential solutions (P.M. Smooker et al.). Drug-induced and antibody-mediated pure red cell
The efficiency of delivering DNA into mammalian cells has increased t- mendously since DEAE dextran was first shown to be capable of enhancing transfer of RNA into mammalian cells in culture. Not only have other chemical methods been developed and refined, but also very efficient physical and viral delivery methods have been established. The technique of introducing DNA into cells has developed from transfecting tissue culture cells to delivering DNA to specific cell types and organs in vivo. Moreover, two important areas of biology-assessment of gene function and gene therapy-require succe- ful DNA delivery to cells, driving the practical need to increase the efficiency and efficacy of gene transfer both in vitro and in vivo. TM These two volumes of the Methods in Molecular Biology series, Gene Del- ery to Mammalian Cells, are designed as a compendium of those techniques that have proven most useful in the expanding field of gene transfer in mammalian cells. It is intended that these volumes will provide a thorough background on chemical, physical, and viral methods of gene delivery, a synopsis of the myriad techniques currently available to introduce genes into mammalian cells, as well as a practical guide on how to accomplish this. It is my expectation that it will be useful to the novice in the field as well as to the scientist with expertise in gene delivery.
This manual reflects practical approaches to handling bacteria in the labora- tory. It is designed to recall historical methods of bacterial genetics that have had recent developments and to present new techniques that allow full genome analysis. It has been written for microbiologists who need to group their protocols at the state of the art of a new millennium and also for scientists in other fields of life sciences who need to use bacteria for their research. Teachers, graduate students, and postdocs also will benefit from having these protocols to help them understand modern bacterial genetics. I learned so much from these contributions from my colleagues that I have no doubt about the daily usefulness of this book. April 2002 Michel Blot XII Abbreviations Acyl-HSL N-acyl homoserine lactone moi multiplicity of infection Amp or Ap ampicillin N amino C carboxy NMR nuclear magnetic resonance CIO-HSL N-decanoyl-L-homoserine lactone 3-0H-C14:1-HSL N-(3-hydroxy-7 -cis-tetra- C12-HSL N-dodecanoyl-L-homoserine lac- decanoyl)homo-serine lactone tone 3-0H-C4-HSL N-3-hydroxybutanoyl-L- C14-HSL N-tetradecanoyl-L-homoserine homoserine lactone lactone ONPG o-nitrophenyl ~-D-galactopyranoside C4-HSL N-butanoyl-L-homoserine lactone ORF open reading frame C6-HSL N-hexanoyl-L-homoserine lactone OTG I-S-octyl-~-D-thioglucoside C8-HSL N-octanoyl-L-homoserine lactone 3-oxo-CIO-HSL N-3-oxodecanoyl-L-homo- Cam or Cm chloramphenicol serine lactone CBD chitin binding domain 3-oxo-C12-HSL N-3-oxododecanoyl-L- CHEF contour clamped homogenous electric homoserine lactone field 3-oxo-C14-HSL N-3-oxotetradecanoyl-L- CI consistency index homoserine lactone CRIM conditional-replication, integration, 3-oxo-C4-HSL N-3-oxobutanoyl-L-homoser- and modular ine lactone dCTP deoxycytidine triphosphate 3-oxo-C6-HSL N-3 -oxohexanoyl-L-homoser- deg.
In Biotechnology for Fuels and Chemicals: The Twenty-Eighth Symposium, leading US and international researchers from academia, industry, and government exchange cutting-edge technical information and update current trends in the development and application of biotechnology for sustainable production of fuels and chemicals. This symposium emphasizes advances in biotechnology to produce high-volume, low-price products from renewable resources, while improving the environment. The major areas of interest include advanced feedstock production and processing, enzymatic and microbial biocatalysis, bioprocess research and development, opportunities in biorefineries, and commercialization of biobased products. International and domestic progress on producing liquid biofuels, especially ethanol and biodiesel, is highlighted, and related topics, including bioseparations and optimal integration of biochemical and thermochemical conversion technologies, are featured. Forward-looking and authoritative, Biotechnology for Fuels and Chemicals: The Twenty-Eighth Symposium provides an illuminating overview of current research and development in the production of commodity fuels and chemicals from renewable biomass resources via biochemical and thermochemical routes.
It is an exciting time to follow the new developments in the field of biotechnology and its wider applications in the different areas. The whole genomes of over 1000 viruses and over 100 microbes can now be found in Entrez Genome. The genomes represent both completely sequenced organisms and those for which sequencing is still in progress. The three main domains of life - bacteria, archaea, and eukaryota - are represented, as well as many viruses and organelles.
Research in the genomics of a handful of fungi has matured at an
unprecedented rate allowing comprehensive review. Developments in
fungal genomics should be of great significance to new strategies
in fields where disciplinary crossovers of fungal genomics, genes
and their regulation, expression, and engineering will have a
strong impact in dealing with agriculture, foods, natural
resources, life sciences, biotechnology, informatics, metabolomics,
pharmaceuticals and bioactive compounds.
Springer Handbook of Enzymes provides data on enzymes sufficiently well characterized. It offers concise and complete descriptions of some 5,000 enzymes and their application areas. Data sheets are arranged in their EC-Number sequence and the volumes themselves are arranged according to enzyme classes. This new, second edition reflects considerable progress in enzymology: many enzymes are newly classified or reclassified. Each entry is correlated with references and one or more source organisms. New datafields are created: application and engineering (for the properties of enzymes where the sequence has been changed). The total amount of material contained in the Handbook has more than doubled so that the complete second edition consists of 39 volumes as well as a Synonym Index. In addition, starting in 2009, all newly classified enzymes are treated in Supplement Volumes. Springer Handbook of Enzymes is an ideal source of information for researchers in biochemistry, biotechnology, organic and analytical chemistry, and food sciences, as well as for medicinal applications.
The objective of the Springer Handbook of Enzymes is to provide in concise form data on enzymes sufficiently well characterized. Data sheets are arranged in their EC-Number sequence. Each volume comprises one enzyme class, sometimes the enzyme classes have to be divided into several volumes. Considerable progress has been made in enzymology since the publication of the first edition (published as "Enzyme Handbook"): many enzymes are newly classified or reclassified. In the 2nd edition each entry is correlated with references and one or more source organisms. New datafields are created: "application" and "engineering" (for the properties of enzymes where the sequence has been changed). Altogether the amount of data has doubled so that the 2nd edition will consist of 39 volumes plus synonym index. This collection is an indispensable source of information for researchers in biochemistry, biotechnology, organic and analytical chemistry, and food sciences.
The advent of new biotechnologies implies significant changes in the world, both biologically and industrially. Biologically, these new technologies represent changes on a scale never before witnessed in the context of evolutionary systems. How these systems will respond to these changes is uncertain and potentially very significant. The first part of this volume addresses these issues in a series of chapters considering the manner in which societies might analyse and manage these systemic responses to biotechnological changes. The second part of the volume addresses the industrial issues concerning biotechnologies. One of the primary motivations for these changes is to enhance the appropriability of the value of innovation occurring within the life sciences sectors. Changing to a property rights-based system of biotechnology has implications for the nature of research and development within these sectors, and the diffusion and distribution of its benefits across the globe. Another set of chapters in this volume sets out a framework for considering these important industrial issues. The volume is the outcome of a two-year project on the economics of managing biotechnologies in agriculture. It is recommended to academics and policy makers interested in the issues concerning society's options in the management of this process of technological change.
The central theme of this book "Microbial BioEnergy: Hydrogen Production" is focused on the biological machinery that microorganisms use to produce hydrogen gas.The book summarizes the achievements over the past decade in the biochemistry, structural and molecular biology, genomics and applied aspects of microbial H2-production, including microbial fuel cells (MFC), by phototrophs such as purple sulfur and non-sulfur bacteria ("Thiocapsa" spp., "Rhodobacter "and "Rhodopseudomonas" spp.) microalgae ("Chlamydomonas")and cyanobacteria ("Anabaena spp.") along with anaerobes and thermophiles such as "Caldicellulosiruptor "and "Thermotoga." This is the first bookof this series entirely devoted to microbial bio-hydrogen production and is intended to be a precious source of information for PhD students, researchers and undergraduates from disciplines such as microbiology, biochemistry, biotechnology, photochemistry and chemical engineering, interested in basic and applied sciences."
The very first major reference text on this topic, this book provides a unique collection of articles reviewing the state of the art in the field. It gives particular emphasis to emerging technologies, from bioengineering and bio-tissues to nanotechnology. The integration of the different topics is presented via a combination of theoretical and applied methodology to provide a self-contained major reference that is appealing to both the scientist and the engineer.
Biomedical Materials provides a comprehensive discussion of contemporary biomaterials research and development. Highlighting important topics associated with Engineering, Medicine and Surgery, this volume reaches a wide scope of professionals, researchers and graduate students involved with biomaterials. A pedagogical writing style and structure provides readers with an understanding of the fundamental concepts necessary to pursue research and industrial work on biomaterials, including characteristics of biomaterials, biological processes, biocompatibility, and applications of biomaterials in implants and medical instruments. Written by leading researchers in the field, this text book takes readers to the forefront of biomedical materials development, providing them with a taste of how the field is changing, while also serving as a useful reference to physicians and engineers.
The book contains articles written by leading authorities in their
respective fields of research. It presents current frontiers and
future guidelines for research based on important discoveries made
in the field of bioactive natural products.
The book provides an overview on various microorganisms and their industrialization in energy conversion, such as ethanol fermentation, butanol fermentation, biogas fermentation and fossil energy conversion. It also covers microbial oil production, hydrogen production and electricity generation. The content is up to date and suits well for both researchers and industrial audiences. |
You may like...
Molecular Medical Microbiology
Yi-Wei Tang, Musa Hindiyeh, …
Mixed media product
R14,897
Discovery Miles 148 970
Frontiers in Aquaculture Biotechnology
W. S. Lakra, Mukunda Goswami, …
Paperback
R3,925
Discovery Miles 39 250
Statistical, Mapping and Digital…
Gilles Maignant, Pascal Staccini
Hardcover
R2,198
Discovery Miles 21 980
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,463
Discovery Miles 34 630
Electrofluidodynamic Technologies…
Vincenzo Guarino, Luigi Ambrosio
Hardcover
R5,304
Discovery Miles 53 040
Targeting Chronic Inflammatory Lung…
Kamal Dua, Philip M. Hansbro, …
Paperback
R4,033
Discovery Miles 40 330
|