![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering
This book provides a comprehensive overview of the benefits of biofertilizers as an alternative to chemical fertilizers and pesticides. Agricultural production has increased massively over the last century due to increased use of chemical fertilizers and pesticides, but these gains have come at a price. The chemicals are not only expensive; they also reduce microbial activity in agricultural soils and accumulate in the food chain, with potentially harmful effects for humans. Accordingly, it is high time to explore alternatives and to find solutions to overcome our increasing dependence on these chemicals. Biofertilizers, which consist of plant remains, organic matter and microorganisms, might offer an alternative. They are natural, organic, biodegradable, eco-friendly and cost-effective. Further, the microbes present in the biofertilizers are important, because they produce nutrients required for plant growth (e.g., nitrogen, phosphorus, potassium), as well as substances essential for plant growth and development (e.g., auxins and cytokinins). Biofertilizers also improve the physical properties, fertility and productivity of soil, reducing the need for chemical fertilizers while maintaining high crop yield. This makes biofertilizers a powerful tool for sustainable agriculture and a sustainable environment. The book covers the latest research on biofertilizers, ranging from beneficial fungal, bacterial and algal inoculants; to microbes for bioremediation, wastewater treatment; and recycling of biodegradable municipal, agricultural and industrial waste; as well as biocontrol agents and bio-pesticides. As such, it offers a valuable resource for researchers, academics and students in the broad fields of microbiology and agriculture.
Rapid changes and significant progress have been made in the Agrobacterium field, such as genetically transforming plants for both basic research purposes and agricultural development. In Agrobacterium Protocols, Third Edition, Volumes 1 and 2, a team of leading experts and veteran researchers describe in detail techniques for delivering DNA to plant cells and permanently altering their genomes. This edition emphasizes agricultural crops and plant species with economic values, with updated protocols on 32 plant species and protocols involving 19 new species. Together with the 1st and 2nd editions, these two volumes offer Agrobacterium-mediated genetic transformation protocols for a total of 76 plant species. For a number of important plants such as rice, barley, wheat and citrus, multiple protocols using different starting plant materials for transformation are included. Volume 2 contains 29 chapters with updated techniques for industrial plants, root plants, nuts and fruits, tropic plants, and other important plant species. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Agrobacterium Protocols, Third Edition facilitates the transfer of this rapidly developing technology to all researchers in both fundamental and applied biology.
It is now well established that all living systems emit a weak but permanent photon flux in the visible and ultraviolet range. This biophoton emission is correlated with many, if not all, biological and physiological functions. There are indications of a hitherto-overlooked information channel within the living system. Biophotons may trigger chemical reactivity in cells, growth control, differentiation and intercellular communication, i.e. biological rhythms. The basic experimental and theoretical framework as well as the technical problems and the wide field of applications in the biotechnical, biomedical engineering, engineering, medicine, pharmacology, environmental science and basic science fields are presented in this book. To promote the dialog and mutual penetration between biophoton research and photon technology is one of the important goals for the International Conference on Biophotons & Biophotonics 2003, and is developed and presented in Biophotonics: Optical Science and Engineering in the 21st Century.
Biosensors are portable and convenient devices that permit the
rapid and reliable analysis of substances. They are increasingly
used in healthcare, drug design, environmental monitoring and the
detection of biological, chemical, and toxic agents. Fractal
Binding and Dissociation Kinetics for Different Biosensor
Applications focuses on two areas of expanding biosensor
development that include (a) the detection of biological and
chemical pathogens in the atmosphere, and (b) biomedical
applications, especially in healthcare. The author provides
numerous examples of practical uses, particularly biomedical
applications and the detection of biological or chemical pathogens.
This book also contains valuable information dedicated to the
economics of biosensors. After reading this book, the reader will
gain invaluable insight into how biosensors work and how they may
be used more effectively.
This volume provides protocols for the generation of various biomaterials for tissue engineering and regenerative medicine applications. The chapters in this book include a look at a range of biomaterials including hydrogels and other matrices (natural, synthetic, self-healing) for various applications including drug and gene delivery, surface modification and functionalization of biomaterials. In addition, techniques described include those for controlling biomaterial geometry, such as three-dimensional printing and electrospinning. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Biomaterials for Tissue Engineering: Methods and Protocols is a valuable resource for scientists and engineers interested in this vital field of study.
Bioremediation is an eco-friendly, cost-effective and natural technology targeted to remove heavy metals, radionuclides, xenobiotic compounds, organic waste, pesticides etc. from contaminated sites or industrial discharges through biological means. Since this technology is used in in-situ conditions, it does not physically disturb the site unlike conventional methods i.e. chemical or mechanical methods.
Biomaterials for Surgical Operation offers a review of the latest advances made in developing bioabsorbable devices for surgical operations which include surgical adhesives (sealants), barriers for the prevention of tissue adhesion, polymers for fractured bone fixation, growth factors for the promotion of wound healing, and sutures. Over the years, many descriptions of biomaterials have appeared in academic journals and books, but most of them have been devoted to limited clinical areas. This is in marked contrast with this volume which covers a wide range of bioabsorbable devices used in surgery from a practical point of view. The currently applied polymeric devices are critical in surgery, but all involve serious problems due to their poor performance. For instance, fibrin glue, the most widely used surgical sealant, can produce only a weak gel with low adhesive strength to tissues, accentuating the limited effectiveness of current treatment options. Likewise, the currently available barrier membranes cannot fully prevent tissue adhesion at the acceptable level and are, moreover, not easy to handle with endoscopes due to their poor mechanical properties. Biomaterials for Surgical Operation is aimed at those who are interested in expanding their knowledge of how the problems associated with the currently used devices for surgical operation can be solved. It primarily focuses on the absorbable biomaterials which are the main components of these medical devices.
Biotechnology has emerged as one of the key environmentally safe technologies for the future which enables use of biomass to develop novel smart materials and to replace oil derived products. Fungi are the most efficient producers of the enzymes needed for this purpose and in addition they produce a plethora of secondary metabolites, among which novel antibiotics can be found. Industrial application and exploitation of the metabolic capacities of fungi requires highly productive and robust gene expression systems, which can be achieved by selection of appropriate species and strain improvement. In this book we aim to summarize homologous and heterologous gene expression systems of fungi for production of enzymes and secondary metabolites. A broad overview on requirements, challenges and successful applications shall serve as a basis for further development of fungi as biotechnological workhorses in research and industry.
The generation of genetically modified mice is absolutely crucial to gene function studies today, primarily because mice are genetically similar to man and because gene function studies in mice are in the context of a whole organism, making them particularly useful. In Transgenic Mouse Methods and Protocols, Second Edition, expert research explore current advances in the field through detailed laboratory protocols. Chapters provide a general introduction outlining how to deal with mice and how to generate transgenic mouse models, explore the generation of conditional and induced knockout and transgenic mice, and offer alternative routes to studying gene function in mice. Composed in the highly successful Methods in Molecular Biology (TM) series format, each chapter contains a brief introduction, step-by-step methods, a list of necessary materials, and a Notes section which shares tips on troubleshooting and avoiding known pitfalls. Comprehensive and state of the art, Transgenic Mouse Methods and Protocols, second Edition is the ideal guide for all researchers interested in the latest information about the production and analysis of transgenic and knockout mice.
Medical textiles are a major growth area within the technical
textiles industry and the range of applications continues to grow
and increase in diversity with every new development. Recent
innovations include novel chitosan-alginate fibres for advanced
wound dressings, ultrasonic energy for bleaching cotton medical
textiles, durable and rechargeable biocidal textiles, spider silk
supportive matrix for cartilage regeneration, barbed bi-directional
surgical sutures and intelligent textiles for medical applications.
This is the first text and monograph about DNA computing, a molecular approach that might revolutionize our thinking and ideas about computing. Although it is too soon to predict whether computer hardware to change from silicon to carbon and from microchips to DNA molecules, the theoretical premises have already been studied extensively. The book starts with an introduction to DNA-related matters, the basics of biochemistry and language and computation theory, and progresses to the most advanced mathematical theory developed so far in the area. All three authors are pioneers in the theory of DNA computing. Apart from being well-known scientists, they are known for their lucid writing. Many of their previous books have become classics in their field, and this book too is sure to follow their example.
This volume arranged into three sections describes biochemical, in vitro, and in vivo protocols on Semaphorins. Chapters focus on approaches that would allow the novice to study Semaphorins and employ robust assays to characterize mechanisms of action. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Semaphorin Signaling: Methods and Protocols aims to ensure successful results in the further study of this vital field.
This book reports the latest work on green technologies in palm oil milling processes, including new processes and various optimisation techniques. It covers the latest developments on palm oil milling process with new technologies, alternative solvent design, residual oil recovery, palm oil mill effluent treatment, palm biomass supply chain, as well as ecoindustrial park concept. The book is intended for industrial practitioners and academics interested in green technologies for palm oil milling processes.
Plants are an important source of fats and oils, which are essential for the human diet. In recent years, genomics of oil biosynthesis in plants have attracted great interest, especially in high oil-bearing plants, such as sesame, olive, sunflower, and palm. Considering that, genome sequencing projects of these plants have been undertaken with the help of advanced genomics tools such as next generation sequencing. Several genome sequencing projects of oil crops are in progress and many others are en route. In addition to genome information, advanced genomics approaches are discussed such as transcriptomics, genomics-assisted breeding, genome-wide association study (GWAS), genotyping by sequencing (GBS), and CRISPR. These have all improved our understanding of the oil biosynthesis mechanism and breeding strategies for oil production. There is, however, no book that covers the genomes and genomics of oil crops. For this reason, in this volume we collected the most recent knowledge of oil crop genomics for researchers who study oil crop genomes, genomics, biotechnology, pharmacology, and medicine. This book covers all genome-sequenced oil crops as well as the plants producing important oil metabolites. Throughout this book, the latest genomics developments and discoveries are highlighted as well as open problems and future challenges in oil crop genomics. In doing so, we have covered the state-of-the-art of developments and trends of oil crop genomics.
Synthetic biology is becoming one of the most dynamic new fields of biology, with the potential to revolutionize the way we do biotechnology today. By applying the toolbox of engineering disciplines to biology, a whole set of potential applications become possible ranging very widely across scientific and engineering disciplines. Some of the potential benefits of synthetic biology, such as the development of low-cost drugs or the production of chemicals and energy by engineered bacteria are enormous. There are, however, also potential and perceived risks due to deliberate or accidental damage. Also, ethical issues of synthetic biology just start being explored, with hardly any ethicists specifically focusing on the area of synthetic biology. This book will be the first of its kind focusing particularly on the safety, security and ethical concerns and other relevant societal aspects of this new emerging field. The foreseen impact of this book will be to stimulate a debate on these societal issues at an early stage. Past experiences, especially in the field of GM-crops and stem cells, have shown the importance of an early societal debate. The community and informed stakeholders recognize this need, but up to now discussions are fragmentary. This book will be the first comprehensive overview on relevant societal issues of synthetic biology, setting the scene for further important discussions within the scientific community and with civil society.
Protein hydrolysates, otherwise commonly known as peptones or peptides, are used in a wide variety of products in fermentation and biotechnology industries. The term "peptone" was first introduced in 1880 by Nagelli for growing bacterial cultures. However, later it was discovered that peptones derived from the partial digestion of proteins would furnish organic nitrogen in readily available form. Ever since, p- tones, which are commonly known as protein hydrolysates, have been used not only for growth of microbial cultures, but also as nitrogen source in commercial fermen- tions using animal cells and recombinant microorganisms for the production of value added products such as therapeutic proteins, hormones, vaccines, etc. Today, the characterization, screening and manufacturing of protein hyd- lysates has become more sophisticated, with the introduction of reliable analytical instrumentation, high throughput screening techniques coupled with statistical design approaches, novel enzymes and efficient downstream processing equipment. This has enabled the introduction of custom-built products for specialized appli- tions in diverse fields of fermentation and biotechnology, such as the following. 1. Protein hydrolysates are used as much more than a simple nitrogen source. For example, the productivities of several therapeutic drugs made by animal cells and recombinant microorganisms have been markedly increased by use of p- tein hydrolysates. This is extremely important when capacities are limited. 2. Protein hydrolysates are employed in the manufacturing of vaccines by ferm- tation processes and also used as vaccine stabilizers.
The objective of the Springer Handbook of Enzymes is to provide in concise form data on enzymes sufficiently well characterized. Data sheets are arranged in their EC-Number sequence. Each volume comprises one enzyme class, sometimes the enzyme classes have to be divided into several volumes. Considerable progress has been made in enzymology since the publication of the first edition (published as "Enzyme Handbook"): many enzymes are newly classified or reclassified. In the 2nd edition each entry is correlated with references and one or more source organisms. New datafields are created: "application" and "engineering" (for the properties of enzymes where the sequence has been changed). Altogether the amount of data has doubled so that the 2nd edition will consist of 39 volumes plus synonym index. This collection is an indispensable source of information for researchers in biochemistry, biotechnology, organic and analytical chemistry, and food sciences.
The book provides an overview on various microorganisms and their industrialization in energy conversion, such as ethanol fermentation, butanol fermentation, biogas fermentation and fossil energy conversion. It also covers microbial oil production, hydrogen production and electricity generation. The content is up to date and suits well for both researchers and industrial audiences.
In recent years the use of liquid—liquid extraction equipment has attracted widespread interest from all major chemical engineering, petroleum and pharmaceutical companies as well as university-based scientists and engineers. Liquid—Liquid Extraction Equipment presents :
Enzymes and whole cells are able to catalyze the most complex chemical processes under the most benign experimental and environmental conditions. In this way, enzymes and cells could be excellent catalysts for a much more sustainable chemical industry. However, enzymes and cells also have some limitations for nonbiological applications: fine chemistry, food chemistry, analysis, therapeutics, and so on. Enzymes and cells may be unstable, difficult to handle under nonconventional conditions, poorly selective toward synthetic substrates, and so forth. From this point of view, the transformation-from the laboratory to industry-of chemical processes catalyzed by enzymes and cells may be one of the most complex and exciting goals in biotechnology. For many industrial applications, enzymes and cells have to be immobilized, via very simple and cost-effective protocols, in order to be re-used over very long periods of time. From this point of view, immobilization, simplicity, and stabilization have to be strongly related concepts. Over the last 30 years, a number of protocols for the immobilization of cells and enzymes have been reported in scientific literature. However, only very few protocols are simple and useful enough to greatly improve the functional properties of enzymes and cells, activity, stability, selectivity, and related properties.
Volume 3 covers recent research with expanded coverage on this important area of remediation. Mycoremediation is the form of bioremediation in which fungi-based technology is used to decontaminate the environment. Fungi are among the primary saprotrophic organisms in an ecosystem, as they are efficient in the decomposition of organic matter. Wood-decay fungi, especially white rot, secretes extracellular enzymes and acids that break down lignin and cellulose. Fungi have been proven to be a very cost-effective and environmentally-friendly way for helping to remove a wide array of toxins from damaged environments or wastewater. These toxins include heavy metals, persistent organic pollutants, textile dyes, leather tanning industry chemicals and wastewater, petroleum fuels, polycyclic aromatic hydrocarbon, pharmaceuticals and personal care products, pesticides and herbicides, in land, fresh water and marine environments. Bioremediation of toxic organics by fungi is the most sustainable and green route for cleanup of contaminated sites and we discuss the multiple modes employed by fungi for detoxification of different toxic and recalcitrant compounds including prominent fungal enzymes viz., catalases, general lipase, laccases, peroxidases and sometimes intracellular enzymes, especially the cyrochrome P450 monooxygeneses. Fungi play an important role in the biogeochemical cycling of manganese and other redox-active metals, which is related to their ability to survive radiation and other oxidative challenges. This book covers recent research with more detail on the various types of fungi and associated fungal processes used to clean up wastes and wastewaters in contaminated environments, and discusses their potential for environmental applications.
This timely volume explores the use of CRISPR-Cas9 for genome editing, presenting cutting-edge techniques and their applications in treatment of disease. The chapters describe latest methods such as use of targetable nucleases, investigation of the non-coding genome, mouse genome editing, increasing of knock-in efficiency in mouse zygotes, and generation of reporter stem cells; the text contextualizes these methods in treatment of cardiovascular disease, diabetes mellitus, retinitis pigmentosa, and others. The final chapters round out the book with a discussion of controversies and future directions. Genome Editing is an essential, of-the-moment contribution to this rapidly growing field. Drawing from a wealth of international perspectives, it presents novel techniques and applications for the engineering of the human genome. This book is essential reading for all clinicians and researchers in stem cells, regenerative medicine, genomics, biochemical and biomedical engineering- especially those interested in learning more about genome editing and applying it in a targeted, specific way.
Bioethanol has been recognized as a potential alternative to petroleum-derived transportation fuels. Even if cellulosic biomass is less expensive than corn and sugarcane, the higher costs for its conversion make the near-term price of cellulosic ethanol higher than that of corn ethanol and even more than that of sugarcane ethanol. Conventional process for bioethanol production from lignocellulose includes a chemical/physical pre-treatment of lignocellulose for lignin removal, mostly based on auto hydrolysis and acid hydrolysis, followed by saccharification of the free accessible cellulose portions of the biomass. The highest yields of fermentable sugars from cellulose portion are achieved by means of enzymatic hydrolysis, currently carried out using a mix of cellulases from the fungus Trichoderma reesei. Reduction of (hemi)cellulases production costs is strongly required to increase competitiveness of second generation bioethanol production. The final step is the fermentation of sugars obtained from saccharification, typically performed by the yeast Saccharomyces cerevisiae. The current process is optimized for 6-carbon sugars fermentation, since most of yeasts cannot ferment 5-carbon sugars. Thus, research is aimed at exploring new engineered yeasts abilities to co-ferment 5- and 6-carbon sugars. Among the main routes to advance cellulosic ethanol, consolidate bio-processing, namely direct conversion of biomass into ethanol by a genetically modified microbes, holds tremendous potential to reduce ethanol production costs. Finally, the use of all the components of lignocellulose to produce a large spectra of biobased products is another challenge for further improving competitiveness of second generation bioethanol production, developing a biorefinery. |
![]() ![]() You may like...
Therapeutic Risk Management of Medicines
Stephen J. Mayall, Anjan Swapu Banerjee
Hardcover
R4,736
Discovery Miles 47 360
The Biodiesel Handbook, Second Edition
Gerhard Knothe, Jon Van Gerpen
Paperback
R3,193
Discovery Miles 31 930
Frontiers in Aquaculture Biotechnology
W. S. Lakra, Mukunda Goswami, …
Paperback
R4,069
Discovery Miles 40 690
Therapeutic Monoclonal Antibodies - From…
Harleen Kaur
Paperback
Statistical, Mapping and Digital…
Gilles Maignant, Pascal Staccini
Hardcover
R2,268
Discovery Miles 22 680
Advanced Nanoformulations - Theranostic…
Md Saquib Hasnain, Amit Kumar Nayak, …
Paperback
R4,120
Discovery Miles 41 200
Developments in Tissue Engineered and…
Joydeep Basu, John W Ludlow
Hardcover
R4,187
Discovery Miles 41 870
|