![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering
The discovery of ribozymes nearly 30 years ago triggered a huge interest in the chemistry and biology of RNAs. Much of the recently made progress focusing on metal ions is addressed in MILS 9. This book, written by 28 internationally recognized experts from 8 nations, provides a most up-to-date view and is thus of special relevance for colleagues teaching courses in biological inorganic chemistry and for researchers dealing, e.g., with nucleic acids, gene expression, and enzymology, but also for those in analytical and bioinorganic chemistry or biophysics. Structural and Catalytic Roles of Metal Ions in RNA describes in an authoritative and timely manner in 12 stimulating chapters, supported by nearly 1600 references, 13 tables, and 75 illustrations, mostly in color, metal ion-binding motifs, methods to detect and characterize metal ion-binding sites, and the role of metal ions in folding and catalysis. It deals with diffuse metal ion binding, RNA quadruplexes, the regulation of riboswitches, metal ions and ribozymes, including artificial ribozymes. The spliceosome, the ribosome, ribozymes involving redox cofactors as well as the binding of kinetically inert metal ions to RNA are also covered.
Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical and biological properties for target devices. Due to this versatility they are rapidly replacing other classes of biomaterials such as ceramics or metals. As a result, the demand for biomedical polymers has grown exponentially and supports a diverse and highly monetized research community. Currently worth $1.2bn in 2009 (up from $650m in 2000), biomedical polymers are expected to achieve a CAGR of 9.8% until 2015, supporting a current research community of approximately 28,000+. Summarizing the main advances in biopolymer development of the
last decades, this work systematically covers both the physical
science and biomedical engineering of the multidisciplinary field.
Coverage extends across synthesis, characterization, design
consideration and biomedical applications. The work supports
scientists researching the formulation of novel polymers with
desirable physical, chemical, biological, biomechanical and
degradation properties for specific targeted biomedical
applications.
"Animal Biotechnology" introduces applications of animal biotechnology and implications for human health and welfare. It begins with an introduction to animal cell cultures and genome sequencing analysis and provides readers with a review of available cell and molecular tools. Topics here include the use of transgenic animal models, tissue engineering, nanobiotechnology, and proteomics. The book then delivers in-depth examples of applications in human health and prospects for the future, including cytogenetics and molecular genetics, xenografts, and treatment of HIV and cancers. All this is complemented by a discussion of the ethical and safety considerations in the field. Animal biotechnology is a broad field encompassing the
polarities of fundamental and applied research, including molecular
modeling, gene manipulation, development of diagnostics and
vaccines, and manipulation of tissue. Given the tools that are
currently available and the translational potential for these
studies, animal biotechnology has become one of the most essential
subjects for those studying life sciences.
This book critically assesses the current state of knowledge on new and important detection technologies, e.g. mass spectrometry, tandem mass spectrometry, biosensor detection and tissue imaging, in connection with toxic chemical and biological agents. In general, the main topics discussed concern the risks and consequences of chemical and biological agents for human health in general, with special emphasis on all biochemical and metabolic pathways including the reproductive system. The exposome, genetic risks and the environment, various health hazard agents, risk assessment, environmental assessment and preparedness, and analysis of sub-lethal effects at the molecular level are also discussed. In closing, the book provides comprehensive information on the diagnosis of exposure, and on health concerns related to toxic chemical and biological agents.
Plant genomics and biotechnology have recently made enormous strides, and hold the potential to benefit agriculture, the environment and various other dimensions of the human endeavor. It is no exaggeration to claim that the twenty-first century belongs to biotechnology. Knowledge generation in this field is growing at a frenetic pace, and keeping abreast of the latest advances and calls on us to double our efforts. Volume II of this two-part series addresses cutting-edge aspects of plant genomics and biotechnology. It includes 37 chapters contributed by over 70 researchers, each of which is an expert in his/her own field of research. Biotechnology has helped to solve many conundrums of plant life that had long remained a mystery to mankind. This volume opens with an exhaustive chapter on the role played by thale cress, Arabidopsis thaliana, which is believed to be the Drosophila of the plant kingdom and an invaluable model plant for understanding basic concepts in plant biology. This is followed by chapters on bioremediation, biofuels and biofertilizers through microalgal manipulation, making it a commercializable prospect; discerning finer details of biotic stress with plant-fungal interactions; and the dynamics of abiotic and biotic stresses, which also figure elsewhere in the book. Breeding crop plants for desirable traits has long been an endeavor of biotechnologists. The significance of molecular markers, marker assisted selection and techniques are covered in a dedicated chapter, as are comprehensive reviews on plant molecular biology, DNA fingerprinting techniques, genomic structure and functional genomics. A chapter dedicated to organellar genomes provides extensive information on this important aspect. Elsewhere in the book, the newly emerging area of epigenetics is presented as seen through the lens of biotechnology, showcasing the pivotal role of DNA methylation in effecting permanent and transient changes to the genome. Exclusive chapters deal with bioinformatics and systems biology. Handy tools for practical applications such as somatic embryogenesis and micropropagation are included to provide frontline information to entrepreneurs, as is a chapter on somaclonal variation.Overcoming barriers to sexual incompatibility has also long been a focus of biotechnology, and is addressed in chapters on wide hybridization and hybrid embryo rescue. Another area of accomplishing triploids through endosperm culture is included as a non-conventional breeding strategy. Secondary metabolite production through tissue cultures, which is of importance to industrial scientists, is also covered. Worldwide exchange of plant genetic material is currently an essential topic, as is conserving natural resources in situ. Chapters on in vitro conservation of extant, threatened and other valuable germplasms, gene banking and related issues are included, along with an extensive account of the biotechnology of spices - the low-volume, high-value crops. Metabolic engineering is another emerging field that provides commercial opportunities. As is well known, there is widespread concern over genetically modified crops among the public. GM crops are covered, as are genetic engineering strategies for combating biotic and abiotic stresses where no other solutions are in sight. RNAi- and micro RNA- based strategies for crop improvement have proved to offer novel alternatives to the existing non-conventional techniques, and detailed information on these aspects is also included. The book's last five chapters are devoted to presenting the various aspects of environmental, marine, desert and rural biotechnology. The state-of-the-art coverage on a wide range of plant genomics and biotechnology topics will be of great interest to post-graduate students and researchers, including the employees of seed and biotechnology companies, and to instructors in the fields of plant genetics, breeding and biotechnology.
Transport phenomena in porous media continues to be a field which attracts intensive research activity. This is primarily due to the fact that it plays an important and practical role in a large variety of diverse scientific applications. "Transport Phenomena in Porous Media II" covers a wide range of the engineering and technological applications, including both stable and unstable flows, heat and mass transfer, porosity, and turbulence.
Volume 8, solely devoted to the toxicology of metals and metalloids as well as their compounds, focuses on human health. Not surprisingly, all related research areas are rapidly developing due to the role of metals and metalloids in the environment, for the work place, for food and water supply, etc. Written by 40 internationally recognized experts, the 14 stimulating chapters provide an authoritative and timely resource for scientists working in the wide range from analytical, physical, inorganic, and environmental biochemistry all the way through to toxicology, physiology, and medicine. Volume 8 highlights, supported by nearly 1900 references, in a comprehensive and timely manner the principles of risk assessment regarding the effects of metals on human health. It examines how metal ions and their compounds affect the pulmonary, cardiovascular, gastrointestinal (including liver), hematological, immune, and neurological systems, the kidney, skin and eyes, as well as human reproduction and development. MILS-8 terminates with the role of metal ions as endocrine disrupters, in genotoxicity, and cancer risk.
This volume is comprised of 18 chapters, covering various aspects of DNA modification and RNA modified bases. It also discusses in detail circular RNA, therapeutic oligonucleotides and their different properties. The chemical nature of DNA, RNA, protein and lipids makes these macromolecules easily modifiable, but they are also susceptible to damage from both endogenous and exogenous agents. Alkylation and oxidation show a potential to disrupt the cellular redox equilibrium and cause cellular damage leading to inflammation and even chronic disease. Furthermore, DNA damage can drive mutagenesis and the resulting DNA sequence changes can induce carcinogenesis and cancer progression. Modified nucleosides can occur as a result of oxidative DNA damage and RNA turnover, and are used as markers for various diseases. To function properly some RNA needs to be chemically modified post-transcriptionally. Dysregulation of the RNA-modification pattern or of the levels of the enzymes that catalyze these modifications alters RNA functionality and can result in complex phenotypes, likely due to defects in protein translation. While modifications are best characterized in noncoding ribonucleic acids like tRNA and rRNA, coding mRNAs have also been found to contain modified nucleosides. This book is a valuable resource, not only for graduate students but also researchers in the fields of molecular medicine and molecular biology.
This book reviews efforts to produce chemicals and fuels from forest and plant products, agricultural residues and more. Algae can potentially capture solar energy and atmospheric CO2; the book details needed research and legislative initiatives.
As the demand for herbal medicines is increasing globally, the supply of medicinal plants is declining because most of this harvest is derived from wild and naturally growing resources. The genetic improvement of medicinal plants to produce higher yields and more active ingredients might help fulfil the increasing demand for medicinal plants. Medicinal plants are one of the most important sources of life-saving drugs for the world’s population. Increasing global demand for herbal medicines is accompanied by a dwindling supply of medicinal plants due to over-harvesting. Biotechnological interventions play a significant role in the improvement of crop yields and quality. Despite such progress in plant molecular biology, only limited biotechnology application has been seen in medicinal plants. Recent breakthroughs in high-throughput approaches have revolutionized this research area and shifted the focus towards omics approaches, such as genomics, transcriptomics, proteomics, and metabolomics. This book discusses these technologies. Currently, there is no existing publication that focuses on omics and medicinal plants.
This book introduces fundamental principles and practical application of techniques used in the scalable production of biopharmaceuticals with animal cell cultures. A broad spectrum of subjects relevant to biologics production and manufacturing are reviewed, including the generation of robust cell lines, a survey of functional genomics for a better understanding of cell lines and processes, as well as advances in regulatory compliant upstream and downstream development. The book is an essential reference for all those interested in translational animal cell-based pharmaceutical biotechnology.
Multiple myeloma is a form of bone cancer. Specifically, it is a cancer of the plasma cells found in bone marrow (bone soft tissue). Normal plasma cells are an important part of the immune system. Mathematical models for multiple myeloma based on ordinary and partial differential equations (ODE/PDEs) are presented in this book, starting with a basic ODE model in Chapter 1, and concluding with a detailed ODE/PDE model in Chapter 4 that gives the spatiotemporal distribution of four dependent variable components in the bone marrow and peripheral blood: (1) protein produced by multiple myeloma cells, termed the M protein, (2) cytotoxic T lymphocytes (CTLs), (3) natural killer (NK) cells, and (4) regulatory T cells (Tregs). The computer-based implementation of the example models is presented through routines coded (programmed) in R, a quality, open-source scientific computing system that is readily available from the Internet. Formal mathematics is minimized, e.g., no theorems and proofs. Rather, the presentation is through detailed examples that the reader/researcher/analyst can execute on modest computers using the R routines that are available through a download. The PDE analysis is based on the method of lines (MOL), an established general algorithm for PDEs, implemented with finite differences.
This edited book provides a comprehensive overview of modern strategies in fruit crop breeding in the era of climate change and global warming. It demonstrates how advances in plant molecular and genomics-assisted breeding can be utilized to produce improved fruit crops with climate-smart traits. Agriculture is facing a number of challenges in the 21st century, as it has to address food, nutritional, energy and environmental security. Future fruit varieties must be adaptive to the varying scenarios of climate change, produce higher yields of high-quality food, feed, and fuel and have multiple uses. To achieve these goals, it is imperative to employ modern tools of molecular breeding, genetic engineering and genomics for 'precise' plant breeding to produce 'designed' fruit crop varieties. This book is of interest to scientists working in the fields of plant genetics, genomics, breeding, biotechnology, and in the disciplines of agronomy and horticulture.
The occurrence of a wide variety of metal-carbon bonds in living organisms, ranging from bacteria to humans, is only recently recognized. Of course, the historical examples are the B12 coenzymes containing cobalt-carbon bonds, but now such bonds are also known for nickel, iron, copper, and other transition metal ions. There is no other comparable book; MILS-6, written by 17 experts, summarizes the most recent insights into this fascinating topic.
There is hardly any technical library in the world in which the volumes of the Chemical Formulary (Volumes 1-34) do not occupy a prominent place. Chemists both experienced and beginner, continually refer to them. It does not duplicate any of the formulas included in previous volumes, but lists a wide array of modern and salable products from all branches of the chemical industries. An excellent reference for formulation problems. -CONTENTS - I. Introduction - II. Adhesives - III. Beverages and Foods - IV. Cosmetics - V. Coatings - VI. Detergents and Disinfectants - VII. Drug Products - VIII. Elastomers, Plastics, and Resins - IX. Metals - X. Polishes - XI. Textile Specialties - XII. Miscellaneous - Appendix - Index - PREFACE - Chemistry, as taught in our schools and colleges, concerns chiefly synthesis, analysis, and engineering-and properly so. It is part of the right foundation for the education of the chemist. Many a chemist entering an Industry soon finds that most of the products manufactured by his concern are not synthetic or definite complex compounds, but are mixtures, blends, or highly complex compounds of which he knows little or nothing. The literature in this field, if any, may be meager, scattered, or obsolete. Even chemists with years of experience In one or more Industries spend considerable time and effort in acquainting themselves with any new field which they may enter. Consulting chemists similarly have to solve problems brought to them from industries foreign to them. There was a definite need for an up-to-date compilation of formulae for chemical compounding and treatment. Since the fields to be covered are many and varied, an editorial board of chemists and engineers engaged in many industries was formed. Many publications, laboratories, manufacturing firms, and Individuals have been consulted to obtain the latest and best information. It is felt that the formulas given in this volume will save chemists and allied workers much time and effort. Manufacturers and sellers of chemicals will find, In these formulae, new uses for their products. Non-chemical executives, professional men, and Interested laymen will make through this volume a "speaking acquaintance" with products which they may be using, trying or selling. It often happens that two Individuals using the same Ingredients in the same formula get different results. This may be due to slight deviations in the raw materials or unfamiliarity with the intricacies of a new technique. Accordingly, repeated experiments may be necessary to get the best results. Although many of the formulas given are being used commercially, many have been taken from the literature and may be subject to various errors and omissions. This should be taken into consideration. Wherever possible, it is advisable to consult with other chemists or technical workers regarding commercial production.
Enzyme Technology is one the most promising disciplines in modern biotechnology. In this book, the applications of a wide variety of enzymes are highlighted. Current studies in enzyme technology are focused towards the discovery of novel enzymes (termed "bio-discovery" or "bio-prospecting") and the identification and elucidation of novel pathways of these novel enzymes with emphasis on their industrial relevance. With the development of molecular techniques and other bioinformatics tools, the time to integrate this subject with other fields in the life sciences has arrived. A rapid expansion of the knowledge base in the field of enzyme biotechnology has occurred over the past few years. Much of this expansion has been driven by the bio-discovery of many new enzymes from a wide range of environments, some extreme in nature, followed by subsequent protein (enzyme) engineering. These enzymes have found a wide range of applications, ranging from bioremediation, bio-monitoring, biosensor development, bioconversion to biofuels and other biotechnologically important value-added products. Hydrolases constitute a major component of the global annual revenue generated by industrial enzymes and the emphasis has therefore been placed on these enzymes and their applications. With the immense interest of researchers active in this area, this book will serve to provide information on current aspects in this field of study. In the current edition, the contributions of many diversified topics towards establishing new directions of research in the area of enzyme biotechnology are described. This book serves to provide a unique source of information to undergraduates, post graduates and doctoral courses in microbiology and biotechnology along with allied life sciences. The present edition of the book covers all important areas of enzyme biotechnology i.e. the wide variety of enzymes in the field of enzyme biotechnology and their industrial applications, new methods and state-of-the-art information on modern methods of enzyme discovery. This book will act as good resource on most of the current facets of enzyme technology for all students engaged in bioengineering and biotechnology.
In recent years, interest in the technology of gas cleaning at high temperatures has grown, driven in part by environmental legislation but also by demands for increases in process efficiency and intensity - notably for power generation and waste incineration. Some techniques for high temperature gas cleaning have now reached practical exploitation, and industrial applications are described by some of the contributors to this volume. This book should be of interest to all in the process industries and in the associated research community who are concerned with collecting particulates and gaseous components at temperatures above 200 degrees centigrade. Many of the major industrial trials of hot gas cleaning techniques since 1986, in both North America and Europe, are included. In particular, authors from both academic and industrial sectors consider: developments in processes and devices to remove particles from hot gas streams; measurement and analysis of particulate and gaseous components; combined processes for the removal of vapours and acid gases using "dry scrubbing" and related techniques; and applications in the process industries and in advanced power generation. This book should be of interest to chemical and process engineers in the industrial and academic sectors.
|
![]() ![]() You may like...
Channel Coding: Theory, Algorithms, and…
David Declercq, Marc Fossorier, …
Paperback
Advances in Stochastic and Deterministic…
Panos M. Pardalos, Anatoly Zhigljavsky, …
Hardcover
R3,627
Discovery Miles 36 270
Computing Algorithms with Applications…
V. K. Giri, Nishchal K. Verma, …
Hardcover
R4,432
Discovery Miles 44 320
Sandwich Structures 7: Advancing with…
O. T. Thomsen, E. Bozhevolnaya, …
Mixed media product
R8,536
Discovery Miles 85 360
Cracked Rotors - A Survey on Static and…
Nicolo Bachschmid, Paolo Pennacchi, …
Hardcover
R4,587
Discovery Miles 45 870
|