![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering
Nanostructured Biomaterials for Cranio-maxillofacial and Oral Applications examines the combined impact of materials science, biomedical and chemical engineering, and biology to provide enhanced biomaterials for applications in maxillo-facial rehabilitation and implantology. With a strong focus on a variety of material classes, it examines material processing and characterization techniques to decrease mechanical and biological failure in the human body. After an introduction to the field, the most commonly used materials for cranio-facial applications, including ceramics, polymers and glass ceramics are presented. The book then looks at nanostructured surfaces, functionally graded biomaterials and the manufacturing of nanostructured materials via 3-D printing. This book is a valuable resource for scientists, researchers and clinicians wishing to broaden their knowledge in this important and developing field.
Genetic Engineering of Horticultural Crops provides key insights into commercialized crops, their improved productivity, disease and pest resistance, and enhanced nutritional or medicinal benefits. It includes insights into key technologies, such as marker traits identification and genetic traits transfer for increased productivity, examining the latest transgenic advances in a variety of crops and providing foundational information that can be applied to new areas of study. As modern biotechnology has helped to increase crop productivity by introducing novel gene(s) with high quality disease resistance and increased drought tolerance, this is an ideal resource for researchers and industry professionals.
Inorganic Frameworks as Smart Nanocarriers for Drug Delivery brings together recent research in the area of inorganic frameworks for drug delivery. Different types of nanocarriers are presented and discussed in detail, providing an up-to-date overview on inorganic nanoparticles with pharmaceutical applications. Written by a diverse range of international academics, this book is a valuable reference resource for researchers in biomaterials, the pharmaceutical industry, and those who want to learn more about the current applications of inorganic smart nanocarriers.
This book provides essential insights into designing a localized DNA circuit to promote the rate of desired hybridization reactions over undesired leak reactions in the bulk solution. The area of dynamic DNA nanotechnology, or DNA circuits, holds great promise as a highly programmable toolbox that can be used in various applications, including molecular computing and biomolecular detection. However, a key bottleneck is the recurring issue of circuit leakage. The assembly of the localized circuit is dynamically driven by the recognition of biomolecules - a different approach from most methods, which are based on a static DNA origami assembly. The design guidelines for individual reaction modules presented here, which focus on minimizing circuit leakage, are established through NUPACK simulation and tested experimentally - which will be useful for researchers interested in adapting the concepts for other contexts. In the closing section, the design concepts are successfully applied to the biomolecular sensing of a broad range of targets including the single nucleotide mutations, proteins, and cell surface receptors.
This manual is designed as an intensive introduction to the various
tools of molecular biology. It introduces all the basic methods of
molecular biology including cloning, PCR, Southern (DNA) blotting,
Northern (RNA) blotting, Western blotting, DNA sequencing,
oligo-directed mutagenesis, and protein expression.
White biotechnology, or industrial biotechnology as it is also known, refers to the use of living cells and/or their enzymes to create industrial products that are more easily degradable, require less energy, create less waste during production and sometimes perform better than products created using traditional chemical processes. Over the last decade considerable progress has been made in white biotechnology research, and further major scientific and technological breakthroughs are expected in the future. Fungi are ubiquitous in nature and have been sorted out from different habitats, including extreme environments (high temperature, low temperature, salinity and pH), and may be associated with plants (epiphytic, endophytic and rhizospheric). The fungal strains are beneficial as well as harmful for human beings. The beneficial fungal strains may play important roles in the agricultural, industrial, and medical sectors. The fungal strains and their products (enzymes, bioactive compounds, and secondary metabolites) are very useful for industry (e.g., the discovery of penicillin from Penicillium chrysogenum). This discovery was a milestone in the development of white biotechnology as the industrial production of penicillin and antibiotics using fungi moved industrial biotechnology into the modern era, transforming it into a global industrial technology. Since then, white biotechnology has steadily developed and now plays a key role in several industrial sectors, providing both high value nutraceutical and pharmaceutical products. The fungal strains and bioactive compounds also play an important role in environmental cleaning. This volume covers the latest developments and research in white biotechnology with a focus on diversity and enzymes.
This thesis uses a systems-level approach to study the cellular metabolism, unveiling new mechanisms and responses that were impossible to reach with traditional reductionists procedures. The results reported here have a potential application in areas like metabolic engineering and disease treatment. They could also be used in determining the accuracy of the gene essentiality of new genome-scale reconstructions. Different methods and techniques, within the contexts of Systems Biology and the field known as Complex Networks Analysis have been applied in this work to show different features of the robustness of metabolic networks. The specific issues addressed here range from pure topological aspec ts of the networks themselves to the balance of biochemical fluxes.
Omics Technologies and Bio-Engineering: Towards Improving Quality of Life, Volume 1 is a unique reference that brings together multiple perspectives on omics research, providing in-depth analysis and insights from an international team of authors. The book delivers pivotal information that will inform and improve medical and biological research by helping readers gain more direct access to analytic data, an increased understanding on data evaluation, and a comprehensive picture on how to use omics data in molecular biology, biotechnology and human health care.
Ranunculales Medicinal Plants: Biodiversity, Chemodiversity and Pharmacotherapy comprehensively covers this order of flowering plants, detailing the phytochemistry, chemotaxonomy, molecular biology, and phylogeny of selected medicinal plants families and genera and their relevance to drug efficacy. The book carries out an exhaustive survey of the literature in order to characterize global trends in the application of flexible technologies. The interrelationship between Chinese species, and between Chinese and non-Chinese species, is inferred through molecular phylogeny and based on nuclear and chloroplast DNA sequencing. The book discusses the conflict between chemotaxonomy and molecular phylogeny in the context of drug discovery and development. Users will find invaluable and holistic coverage on the study of Ranunculales that will make this the go-to pharmaceutical resource.
Peptide Applications in Biomedicine, Biotechnology and Bioengineering summarizes the current knowledge on peptide applications in biomedicine, biotechnology and bioengineering. After a general introduction to peptides, the book addresses the many applications of peptides in biomedicine and medical technology. Next, the text focuses on peptide applications in biotechnology and bioengineering and reviews of peptide applications in nanotechnology. This book is a valuable resource for biomaterial scientists, polymer scientists, bioengineers, mechanical engineers, synthetic chemists, medical doctors and biologists.
This book covers the latest development in the biotechnological application of extremophiles. Along with this the impact of climate change and environmental pollution on loss of diversity of extremophiles is also discussed. This is crucial as the loss of this diversity is related with the loss of many bioactive compounds and bacteria of ecological importance. This volume outlines applications of extremophiles in biotechnology, nanotechnology, and bioremediation.
Engineering of Biomaterials for Drug Delivery Systems: Beyond Polyethylene Glycol examines the combined issues of PEGylation and viable biomaterials as alternatives. With a strong focus on polymeric biomaterials, the book first reviews the major issues associated with PEGylation and its use in vivo. Chapters then focus on alternative polymer systems for drug delivery systems. Finally, nanoparticles and future perspectives are examined. This book is a valuable resource for scientists and researchers in biomaterials, pharmaceuticals and nanotechnology, and all those who wish to broaden their knowledge in this field.
Environmental sustainability is one of the biggest issues faced by the mankind. Rapid & rampant industrialization has put great pressure on the natural resources. To make our planet a sustainable ecosystem, habitable for future generations & provide equal opportunity for all the living creatures we not only need to make corrections but also remediate the polluted natural resources. The low-input biotechnological techniques involving microbes and plants can provide the solution for resurrecting the ecosystems. Bioremediation and biodegradation can be used to improve the conditions of polluted soil and water bodies. Green energy involving biofuels have to replace the fossil fuels to combat pollution & global warming. Biological alternatives (bioinoculants) have to replace harmful chemicals for maintaining sustainability of agro-ecosystems. The book will cover the latest developments in environmental biotech so as to use in clearing and maintaining the ecosystems for sustainable future.
Biomass for Renewable Energy, Fuels, and Chemicals serves as a
comprehensive introduction to the subject for the student and
educator, and is useful for researchers who are interested in the
technical details of biomass energy production. The coverage and
discussion are multidisciplinary, reflecting the many scientific
and engineering disciplines involved. The book will appeal to a
broad range of energy professionals and specialists, farmers and
foresters who are searching for methods of selecting, growing, and
converting energy crops, entrepreneurs who are commercializing
biomass energy projects, and those involved in designing solid and
liquid waste disposal-energy recovery systems.
The significant media coverage recently given to issues such as the international impacts of biofuel production policies, advances in synthetic biology, and the ethical implications of research involving embryonic stem cells, is indicative of the high-level of interest - among policy-makers, academics and the public - in the biotechnology revolution, its applications, impacts and control. There is also significant interest in international regulatory processes as a form of governance, and international regulation is a vital part of efforts to manage the impacts of the biotechnology revolution, since many of these are global in their nature. The book establishes the need for international regulation of biotechnology, identifying the roles it needs to play, and the issues it needs to cover. Having outlined the importance of coherence to the effective functioning of international regulatory sets, a model of coherent international regulation is established, against which the biotechnology regulations can be assessed. This book approaches the subject from an international relations perspective but also draws from, and will contribute to, literature in the fields of international law, global governance, technological governance, and science-society relations.
This book focuses on the state-of-the-art of biosensor research and development for specialists and non-specialists. It introduces the fundamentals of the subject with relevant characteristics of transducer elements, as well as biochemical recognition molecules. This book is ideal for researchers of nanotechnology, materials science and biophysics.
In order to grow replacement tissues, 3D scaffolds are widely used as a template for tissue engineering and regeneration. These scaffolds, which are typically 'seeded' with cells, support the growth of new tissues. However, in order to achieve successful tissue growth, the scaffold must meet specific requirements and are often 'functionalized' to accentuate particular properties. Functional 3D tissue engineering scaffolds: materials, technologies, and applications, is a comprehensive review of functional 3D scaffolds, providing information on the fundamentals, technologies, and applications. Part 1 focuses on the fundamentals of 3D tissue scaffolds, examining information on materials, properties, and trends. Part 2 discusses a wide range of conventional technologies for engineering functional 3D scaffolds, leading the way to a discussion on CAD and advanced technologies for functional 3D scaffold engineering. Chapters in part 3 study methods for functionalizing scaffolds to support a variety of in vivo functions whilst the final set of chapters provides an important review of the most significant applications of functional 3D scaffolds within tissue engineering. This book is a valuable resource for biomaterial scientists and biomedical engineers in academia and industry, with interests in tissue engineering and regenerative medicine.
This book reviews the wide range of products and applications of solid state fermentation as well as the development of this cultivation technology over the last years. In this book, readers will also learn about the challenges of solid state fermentation, including process management, reactor design, scale-up and the formation of process-specific products. Solid fermentation is a traditional cultivation technique of food technology and involves all cultivations of microorganisms on a solid substrate without free liquid phase. In the course of development of Biotechnology it was replaced by liquid cultivation mainly in the western countries. Over the past few years, solid-state fermentation is now becoming more important and has moved more back into focus. Especially, it is suitable for the cultivation of filamentous organisms, like ascomycetes and basidiomycetes, but also for various yeasts and bacteria. The products and applications of solid-state fermentation are as diverse as the microorganisms. They range from enzyme production to the production of antibiotics and pigments to the use in environmental technology and energy production.
Basic Laboratory Methods for Biotechnology, Third Edition is a versatile textbook that provides students with a solid foundation to pursue employment in the biotech industry and can later serve as a practical reference to ensure success at each stage in their career. The authors focus on basic principles and methods while skillfully including recent innovations and industry trends throughout. Fundamental laboratory skills are emphasized, and boxed content provides step by step laboratory method instructions for ease of reference at any point in the students' progress. Worked through examples and practice problems and solutions assist student comprehension. Coverage includes safety practices and instructions on using common laboratory instruments. Key Features: Provides a valuable reference for laboratory professionals at all stages of their careers. Focuses on basic principles and methods to provide students with the knowledge needed to begin a career in the Biotechnology industry. Describes fundamental laboratory skills. Includes laboratory scenario-based questions that require students to write or discuss their answers to ensure they have mastered the chapter content. Updates reflect recent innovations and regulatory requirements to ensure students stay up to date. Tables, a detailed glossary, practice problems and solutions, case studies and anecdotes provide students with the tools needed to master the content. To succeed in the lab, it is crucial to be comfortable with the math calculations that are part of everyday work. This accessible introduction to common laboratory techniques focuses on the basics, helping even readers with good math skills to practice the most frequently encountered types of problems. Basic Laboratory Calculations for Biotechnology, Second Edition discusses very common laboratory problems, all applied to real situations. It explores multiple strategies for solving problems for a better understanding of the underlying math. Primarily organized around laboratory applications, the book begins with more general topics and moves into more specific biotechnology laboratory techniques at the end. This book features hundreds of practice problems, all with solutions and many with boxed, complete explanations; plus hundreds of "story problems" relating to real situations in the lab. Additional features include: Discusses common laboratory problems with all material applied to real situations Presents multiple strategies for solving problems help students to better understand the underlying math Provides hundreds of practice problems and their solutions Enables students to complete the material in a self-paced course structure with little teacher assistance Includes hundreds of "story problems"that relate to real situations encountered in the laboratory
This book gathers the latest findings on the microbial ecology of saline habitats, plant-microbe interactions under saline conditions, and saline soil reclamation for agricultural use. The content is divided into four main parts: Part I outlines the definition of salinity, its genesis and impacts, and microbial diversity in saline habitats. Part II deals with impact of salinity on microbial and plant life/health. Part III highlights plant - microbe interactions in saline environments, and Part IV describes strategies for mitigation and reclamation of saline soils. The salinization of arable land is steadily increasing in many parts of the world. An excessive concentration of soluble salts (salinity) in soils or irrigation water adversely affects plant growth and survival. This problem is exacerbated in arid and semiarid areas due to their low precipitation and high evaporation rates. In turn, poor management practices and policies for using river water for the irrigation of agriculture crops often lead to the secondary salinization of soils. Considering the growing demands of a constantly expanding population, understanding the microbial ecology and interactions under saline conditions and their implications for sustainable agriculture is of utmost importance. Providing both an essential review of the status quo and a future outlook, this book represents a valuable asset for researchers, environmentalists and students working in microbiology and agriculture. .
|
You may like...
Internet of Things: Novel Advances and…
D P Acharjya, M. Kalaiselvi Geetha
Hardcover
R4,731
Discovery Miles 47 310
Primary Social Studies and Tourism…
Brother James, Michael Morrissey
Paperback
R548
Discovery Miles 5 480
Role of 6g Wireless Networks in AI and…
Malaya Dutta Borah, Steven A. Wright, …
Hardcover
R6,206
Discovery Miles 62 060
Advances in Computer Science and…
James J. Park, Doo-Soon Park, …
Hardcover
R5,271
Discovery Miles 52 710
|