![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering
Advances in Polyurethane Biomaterials brings together a thorough review of advances in the properties and applications of polyurethanes for biomedical applications. The first set of chapters in the book provides an important overview of the fundamentals of this material with chapters on properties and processing methods for polyurethane. Further sections cover significant uses such as their tissue engineering and vascular and drug delivery applications Written by an international team of leading authors, the book is a comprehensive and essential reference on this important biomaterial.
Engineering of Nanobiomaterials presents the most recent information regarding the specific modifications of nanomaterials and of their synthesis methods, in order to obtain particular structures for different biomedical purposes. This book enables the results of current research to reach those who wish to use this knowledge in an applied setting. Engineered nanobiomaterials, designed from organic or inorganic raw materials, offer promising alternatives in many biomedical applications. In this book, eminent researchers from around the world discuss the various applications, including antibacterial therapy, biosensors, cancer therapy, stimuli-responsive drug release, drug delivery, gene therapy and visual prostheses. In each case, advantages, drawbacks and future potential are outlined. This book will be of interest to students, postdoctoral researchers and professors engaged in the fields of materials science, biotechnology and applied chemistry. It will also be highly valuable to those working in industry, including pharmaceutics and biotechnology companies, medical researchers, biomedical engineers and advanced clinicians.
Fabrication and Self-Assembly of Nanobiomaterials presents the most recent findings regarding the fabrication and self-assembly of nanomaterials for different biomedical applications. Respected authors from around the world offer a comprehensive look at how nanobiomaterials are made, enabling knowledge from current research to be used in an applied setting. Recent applications of nanotechnology in the biomedical field have developed in response to an increased demand for innovative approaches to diagnosis, exploratory procedures and therapy. The book provides the reader with a strong grounding in emerging biomedical nanofabrication technologies, covering numerous fabrication routes for specific applications are described in detail and discussing synthesis, characterization and current or potential future use. This book will be of interest to professors, postdoctoral researchers and students engaged in the fields of materials science, biotechnology and applied chemistry. It will also be highly valuable to those working in industry, including pharmaceutics and biotechnology companies, medical researchers, biomedical engineers and advanced clinicians.
Mushroom Biotechnology: Developments and Applications is a comprehensive book to provide a better understanding of the main interactions between biological, chemical and physical factors directly involved in biotechnological procedures of using mushrooms as bioremediation tools, high nutritive food sources, and as biological helpers in healing serious diseases of the human body. The book points out the latest research results and original approaches to the use of edible and medicinal mushrooms as efficient bio-instruments to reduce the environment and food crises. This is a valuable scientific resource to any researcher, professional, and student interested in the fields of mushroom biotechnology, bioengineering, bioremediation, biochemistry, eco-toxicology, environmental engineering, food engineering, mycology, pharmacists, and more.
Biomimetic engineering takes the principles of biological organisms and copies, mimics or adapts these in the design and development of new materials and technologies. Biomimetic Technologies reviews the key materials and processes involved in this groundbreaking field, supporting theoretical background by outlining a range of applications. Beginning with an overview of the key principles and materials associated with biomimetic technologies in Part One, the book goes on to explore biomimetic sensors in more detail in Part Two, with bio-inspired tactile, hair-based, gas-sensing and sonar systems all reviewed. Biomimetic actuators are then the focus of Part Three, with vision systems, tissue growth and muscles all discussed. Finally, a wide range of applications are investigated in Part Four, where biomimetic technology and artificial intelligence are reviewed for such uses as bio-inspired climbing robots and multi-robot systems, microrobots with CMOS IC neural networks locomotion control, central pattern generators (CPG's) and biologically inspired antenna arrays.
Genetically Modified Organisms in Food focuses on scientific evaluation of published research relating to GMO food products to assert their safety as well as potential health risks. This book is a solid reference for researchers and professionals needing information on the safety of GMO and non-GMO food production, the economic benefits of both GMO and non-GMO foods, and includes in-depth coverage of the surrounding issues of genetic engineering in foods. This is a timely publication written by a team of scientific experts in the field who present research results to help further more evidence based research to educate scientists, academics, government professionals about the safety of the global food supply.
Batch and Semi-batch Reactors: Practical Guides in Chemical Engineering is a cluster of short texts that provide a focused introductory view on a single subject. The full library presents a basic understanding of the main topics in the chemical process industries, allowing engineering professionals to quickly access information. Each 'pocket publication' can be easily carried or accessed electronically, giving users a highly practical and applied presentation of the first principles engineers need know on a moment's notice. The focused facts provided in each guide help users converse with experts in the field, attempt their own initial troubleshooting, check calculations, and solve rudimentary problems.
'Direct Microbial Conversion of Biomass to Advanced Biofuels' is a stylized text that is rich in both the basic and applied sciences. It provides a higher level summary of the most important aspects of the topic, addressing critical problems solved by deep science. Expert users will find new, critical methods that can be applied to their work, detailed experimental plans, important outcomes given for illustrative problems, and conclusions drawn for specific studies that address broad based issues. A broad range of readers will find this to be a comprehensive, informational text on the subject matter, including experimentalists and even CEOs deciding on new business directions.
Biotechnology in Healthcare, Technologies and Innovations, Volume One presents up-to-date knowledge on the emerging field of biotechnology as applied to the healthcare industry. Sections cover 3D printing, tissue engineering, synthetic biology, nano-biotechnology, omics, precision medicine, gene therapy, vaccine development, predictive healthcare, entrepreneurship, financing, business models, product development and marketing in the sector. This is a valuable source for biotechnologists, bioinformaticians, clinicians and members of biomedical and healthcare fields who need to understand more about the promising developments of the emerging field of biotechnology in healthcare.
A compilation of up to date reviews of topics in biotechnology and the medical field.
This book reviews the state of the art in the use of organic materals as physical, chemical and biomedical sensors in a variety of application settings. Topics covered include organic semiconductors for chemical and physical sensing; conducting polymers in sensor applications; chemically functionalized organic semiconductors for highly selective sensing; composite organic-inorganic sensors; artificial skin applications; organic thin film transistor strain gauges for biomedical applications; OTFT infrared sensors for touchless human-machine interaction; smart fabric sensors and e-textile technologie; image capture with organic sensors; organic gas sensors and electronic noses; electrolyte gated organic transistors for bio-chemical sensing; ion-selective organic electrochemical transistors; DNA biosensors; metabolic organic sensors; and conductive polymer based sensors for biomedical applications.
The Elsevier book-series "Advances in Planar Lipid Bilayers and Liposomes' (APLBL) provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes and lipid self-assemblies from the micro- to the nanoscale. Planar lipid bilayers are widely studied due to their ubiquity in nature and find their application in the formulation of biomimetic model membranes and in the design of artificial dispersion of liposomes. Moreover, lipids self-assemble into a wide range of other structures including micelles and the liquid crystalline hexagonal and cubic phases. Consensus has been reached that curved membrane phases do play an important role in nature as well, especially in dynamic processes such as vesicles fusion and cell communication. Self-assembled lipid structures have enormous potential as dynamic materials ranging from artificial lipid membranes to cell membranes, from biosensing to controlled drug delivery, from pharmaceutical formulations to novel food products to mention a few. An assortment of chapters in APLBL represents both an original research as well as comprehensives reviews written by world leading experts and young researchers.
Biotechnology has prompted a revolution in science and society in the truest sense of the word. For what superficially appears to be a revolution in biotechnology, in effect touches upon the fundamentals of life and the way in which humans relate to it. This book will make a significant contribution to the debate surrounding the effective regulation of biotechnology. The contributing authors assess how regulatory regimes can accommodate the many different and often conflicting issues to which biotechnology is giving rise to (including a very tainted public image). The book's ultimate aim is to explore ways of designing a regulatory regime that takes heed of these different demands whilst, at the same time, answering to the imperatives of effectiveness and efficiency. The book synthesizes three fields of legal analysis; the first focuses on the risk-dominated regulation of GM food and bio-agriculture; the second involves human genetics as a field dominated by considerations of ethics. Finally, patent law has been chosen as an area captured by notions of property. With its holistic approach, The Regulatory Challenge of Biotechnology will be of great interest to academics, policymakers and regulators as well as biotechnology and law students.
The advances in microsystems offer new opportunities and capabilities to develop systems for biomedical applications, such as diagnostics and therapy. There is a need for a comprehensive treatment of microsystems and in particular for an understanding of performance limits associated with the shrinking scale of microsystems. The new edition of Microsystems for Bioelectronics addresses those needs and represents a major revision, expansion and advancement of the previous edition. This book considers physical principles and trends in extremely scaled autonomous microsystems such as integrated intelligent sensor systems, with a focus on energy minimization. It explores the implications of energy minimization on device and system architecture. It further details behavior of electronic components and its implications on system-level scaling and performance limits. In particular, fundamental scaling limits for energy sourcing, sensing, memory, computation and communication subsystems are developed and new applications such as optical, magnetic and mechanical sensors are presented. The new edition of this well-proven book with its unique focus and interdisciplinary approach shows the complexities of the next generation of nanoelectronic microsystems in a simple and illuminating view, and is aimed for a broad audience within the engineering and biomedical community. |
You may like...
Teaching Statistics - A Bag of Tricks
Andrew Gelman, Deborah Nolan
Hardcover
R3,117
Discovery Miles 31 170
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
An Introduction to Time Series Analysis…
Robert A Yaffee, Monnie McGee
Hardcover
R2,506
Discovery Miles 25 060
Sample Surveys: Design, Methods and…
Danny Pfeffermann, C.R. Rao
Hardcover
R5,708
Discovery Miles 57 080
Integrated Population Biology and…
Arni S.R. Srinivasa Rao, C.R. Rao
Hardcover
R6,219
Discovery Miles 62 190
Analysis of Repeated Measures Data
M. Ataharul Islam, Rafiqul I Chowdhury
Hardcover
R3,049
Discovery Miles 30 490
Student Solutions Manual for…
Charles H. Brase, Corrinne P. Brase
Paperback
|