![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering
Advances in Nanosensors for Biological and Environmental Analysis presents the current state-of-art in nanosensors for biological and environmental analysis, also covering commercial aspects. Broadly, the book provides detailed information on the emergence of different types of nanomaterials as transduction platforms used in the development of nanosensors. These include carbon nanotubes, graphene, 2-D transition metal dichalcogenides, conducting polymers and metal organic frameworks. Additional topics include sections on the way nanosensors have inspired new product development in various types of biological and environmental applications that are currently available and on the horizon.
Functional Polysaccharides for Biomedical Applications examines the fundamentals and properties of these natural materials and their potential biomedical applications. With an emphasis on therapeutic and sensing applications, the book also reviews how polysaccharides can be modified for tissue engineering applications. Sections discuss the basics of polysaccharides, give an overview of the potential applications, look at novel materials and technologies for use in tissue regeneration and therapeutics, and detail current biomedical applications. With a strong focus on materials, engineering and applications, this book is a valuable resource for those with an interest in harnessing the biomedical potential of natural polymers.
Nanotechnology in Modern Animal Biotechnology: Concepts and Applications discusses the advancement of nanotechnologies in almost every field, ranging from materials science, to food, forensic, agriculture and life sciences, including biotechnology and medicine. Nanotechnology is already being harnessed to address many of the key problems in animal biotechnology, with future applications covering animal biotechnology (e.g. animal nutrition, health, disease diagnosis, and drug delivery). This book provides the tools, ideas and techniques of nanoscale principles to investigate, understand and transform biological systems. Nanotechnology provides the ability to manipulate materials at atomic and molecular levels and also arrange atom-by-atom on a scale of ~1-100 nm to create, new materials and devices with fundamentally new functions and properties arising due to their small scale.
Advanced Dental Biomaterials is an invaluable reference for researchers and clinicians within the biomedical industry and academia. The book can be used by both an experienced researcher/clinician learning about other biomaterials or applications that may be applicable to their current research or as a guide for a new entrant into the field who needs to gain an understanding of the primary challenges, opportunities, most relevant biomaterials, and key applications in dentistry.
Applied Plant Biotechnology for Improvement of Resistance to Biotic Stress applies biotechnology insights that seek to improve plant genomes, thus helping them achieve higher resistance and optimal hormone signaling to increase crop yield. The book provides an analysis of the current state-of-the-art in plant biotechnology as applied to improving resistance to biotic stress. In recent years, significant progress has been made towards understanding the interplay between plants and their hosts, particularly the role of plant immunity in regulating, attenuating or neutralizing invading pathogens. As a result, there is a great need to integrate these insights with methods from biotechnology.
New and Future Developments in Microbial Biotechnology and Bioengineering: Microbes in Soil, Crop and Environmental Sustainability reviews the exploitation of microbial biodiversity in soil with respect to nutrient-use efficiency, also discussing the improvement and maintenance of certain physical and chemical conditions in soil that can provide economic and environmental benefits toward agricultural sustainability. The utilization of microbes ranges from applications in biotechnology, marginal land restoration, the formulation of microbial inoculants, the enhancement of crop productivity, and the mitigation of global warming gases. Finally, various uses for microbial resources in crop disease management, bioenergy production, and income based on microbial cultivation are explored.
Genomics and Biotechnological Advances in Veterinary, Poultry, and Fisheries is a comprehensive reference for animal biotechnologists, veterinary clinicians, fishery scientists, and anyone who needs to understand the latest advances in the field of next generation sequencing and genomic editing in animals and fish. This essential reference provides information on genomics and the advanced technologies used to enhance the production and management of farm and pet animals, commercial and non-commercial birds, and aquatic animals used for food and research purposes. This resource will help the animal biotechnology research community understand the latest knowledge and trends in this field.
Current Trends and Future Developments on (Bio-) Membranes: Microporous Membrane and Membrane Reactors focuses on the structure, preparation, characterization and applications of microporous membranes and membrane reactors, including transport mechanisms through a range of microporous membranes. It is a key reference text for R&D managers who are interested in the development of gas separation and water/waste treatment technologies, but is also well-suited for academic researchers and postgraduate students working in the broader area of strategic material production, separation and purification. Users will find comprehensive coverage of current methods, their characterization and properties, and various applications in gas separation and water treatment.
Polysaccharide Carriers for Drug Delivery presents the latest information on the selection of safe materials. Due to reported safety profiles on polysaccharides; they have been the natural choice for investigation. A wide variety of drug delivery and biomedical systems have been studied, however, the related information either concept-wise or application-oriented is scattered, therefore becoming difficult for readers and researchers to digest in a concise manner. This gathering of information will help readers easily comprehend the subject matter.
Materials for Biomedical Engineering: Absorbable Polymers provides a detailed and comprehensive review of recent progress in absorbable biopolymers and their impact on biomedical engineering. The book's main focus lies in their classification, processing, properties and performance, biocompatibility, and their applications in tissue engineering, drug delivery, bone repair and regenerative medicine. The most up-to-date methods used to obtain such polymers and how to improve their properties is discussed in detail. This book provides readers with a comprehensive and updated review of the latest research in the field of absorbable polymers for biomedical applications.
Biomaterials for Skin Repair and Regeneration examines a range of materials and technologies used for regenerating or repairing skin. With a strong focus on biomaterials and scaffolds, the book also examines the testing and evaluation pathway for human clinical trials. Beginning by introducing the fundamentals on skin tissue, the book goes on to describe contemporary technology used in skin repair as well as currently available biomaterials suitable for skin tissue repair and regeneration. Skin tissue engineering and the ideal requirements to take into account when developing skin biomaterials are discussed, followed by information on the individual materials used for skin repair and regeneration. As evaluation of biomaterials in animal models is mandatory before proceeding into human clinical trials, the book also examines the different animal models available. With a strong focus on materials, engineering, and application, this book is a valuable resource for materials scientists, skin biologists, and bioengineers with an interest in tissue engineering, regeneration, and repair of skin.
Genetic Engineering and Genome Editing for Zinc Biofortification of Rice provides the first single-volume, comprehensive resource on genetic engineering approaches, including novel genome editing techniques, that are carried out in rice, a staple crop for much of the world's population. Dietary zinc deficiency can lead to negative health outcomes, including increased risk of stunting, respiratory diseases, diarrhea, mortality during childhood, and preterm births in pregnancy. By providing a complete view of the need for zinc biofortification in rice, sections in this book discuss state-of-the-art scientific advances, and then go further, placing them in their proper scientific, regulatory and socioeconomic contexts. While zinc biofortification can be achieved through conventional breeding, genetic engineering and agronomic practices, this is the first reference to bring all the latest insights and understanding to a comprehensive resource that is based on real-world experience and targeted applications.
Advances and Applications of Partitioning Bioreactors, Volume 54, presents an updated reference in the field of partitioning bioreactors, addressing the relevance of kinetic determination, cell deactivation and transport phenomena from an engineering point-of-view. Topics covered in this new release include Mass transport phenomena in partitioning bioreactors, Modelling and design of partitioning bioreactors, Population balances for partitioning bioreactors, Solid-liquid partitioning bioreactors for industrial wastewater treatment, Multiphase bioreactors in the Food Industry, Multiphase bioreactors in the pharmaceutical industry, Biological treatment of gas pollutants in partitioning bioreactors, Hydrocarbon biodegradation using airlift bioreactors, and more.
Theranostic Bionanomaterials is an invaluable study of recent advances and trends in the development and application of functional bionanomaterials for theranostic applications. This book describes the design and characterization of nanomaterials which exhibit distinctive physical, chemical and biological properties and discusses how these functional nanomaterials enable the precise manipulation of architectural, physical and biochemical cell microenvironments in vitro. In addition, it covers how they can act as the carriers of diagnostic or therapeutic agents, thus providing new pathways or strategies for disease diagnosis and treatment. Specific chapters discuss protein delivery, drug delivery, tissue regeneration, bioimaging, biodetection, and much more. This book will be a critical resource for those involved in cutting-edge research in theranostics bionanomaterial.
Materials for Biomedical Engineering: Bioactive Materials for Antimicrobial, Anticancer, and Gene Therapy offers an up-to-date perspective on recent research findings regarding the application and use of these materials for disease treatment and prevention. Various types of currently investigated bioactive materials, including therapeutic nanostructures and antimicrobial hydrogels are discussed, as are their properties, impact and future role in therapeutic applications. The book will be extremely useful for new researchers who want to explore more information on the use of bioactive materials or for more experienced researchers who are interested in new trends and specific applications.
Single-Cell Omics: Volume 1: Technological Advances and Applications provides the latest technological developments and applications of single-cell technologies in the field of biomedicine. In the current era of precision medicine, the single-cell omics technology is highly promising due to its potential in diagnosis, prognosis and therapeutics. Sections in the book cover single-cell omics research and applications, diverse technologies applied in the topic, such as pangenomics, metabolomics, and multi-omics of single cells, data analysis, and several applications of single-cell omics within the biomedical field, for example in cancer, metabolic and neuro diseases, immunology, pharmacogenomics, personalized medicine and reproductive health. This book is a valuable source for bioinformaticians, molecular diagnostic researchers, clinicians and members of the biomedical field who are interested in understanding more about single-cell omics and its potential for research and diagnosis.
Microbial Biofilms: Challenges and Advances in Metabolomics Study, a volume in the Advances in Biotechnology and Bioengineering series, covers the metabolomic characteristics of bacterial biofilms and examines the techniques used in the analysis of the metabolomics of the biofilm, its formation and related infections. The book covers the metabolomics study of various types of biofilms and details new strategies in targeting metabolic pathways for inhibiting the biofilm. The book also details various types of metabolomics studies of biofilm formation such as oral biofilm and biofilm by various nosocomial organisms. Recent advancements on various aspects of metabolomics studies pertaining to biofilms, related infections, their pathogenesis, and present-day treatment strategies are also covered. This book will be a helpful resource to scientists and researchers engaged in studying the formation of biofilms based upon the metabolomics changes taking place within the organism and to clinicians and health professionals interested in chronic infections caused by the biofilm and related metabolomics studies.
The author is ready to assert that practically none of the readers of this book will ever happen to deal with large doses of radiation. But the author, without a shadow of a doubt, claims that any readers of this book, regardless of gender, age, financial situation, type of professional activity, and habits, are actually exposed to low doses of radiation throughout their life. This book is devoted to the effect of small doses on the body. To understand the basic effects of radiation on humans, the book contains the necessary information from an atomic, molecular and nuclear physics, as well as from biochemistry and biology. Special attention is paid to the issues that are either not considered or discussed very briefly in existing literature. Examples include the ionization of inner atomic shells that play an essential role in radiological processes, and the questions of transformation of the energy of ionizing radiation in matter. The benefits of ionizing radiation to mankind is reflected in a wide range of radiation technologies used in science, industry, agriculture, culture, art, forensics, and, what is the most important application, medicine. Radiation: Fundamentals, Applications, Risks and Safety provides information on the use of radiation in modern life, its usefulness and indispensability. Experiments on the effects of small doses on bacteria, fungi, algae, insects, plants and animals are described. Human medical experiments are inhuman and ethically flawed. However, during the familiarity of mankind with ionizing radiation, a large number of population groups were subject to accumulation, exposed to radiation at doses of small but exceeding the natural background radiation. This book analyzes existing, real-life radiation results from survivors of Hiroshima and Nagasaki, Chernobyl and Fukushima, and examines studies of radiation effect on patients, radiologists, crews of long-distant flights and astronauts, on miners of uranium copies, on workers of nuclear industry and on militaries, exposed to ionizing radiation on a professional basis, and on the population of the various countries receiving environmental exposure. The author hopes that this book can mitigate the impact of radiation phobia, which prevails in the public consciousness over the last half century. |
You may like...
Tax Policy and Uncertainty - Modelling…
Christopher Ball, John Creedy, …
Hardcover
R2,987
Discovery Miles 29 870
New Trends in the Physics and Mechanics…
Martine Ben Amar, Alain Goriely, …
Hardcover
R2,505
Discovery Miles 25 050
Mass Outflows from Stars and Galactic…
Luciana Bianchi, Roberto Gilmozzi
Hardcover
R5,389
Discovery Miles 53 890
Solar Composition and its Evolution…
Claus Froehlich, M. Huber, …
Hardcover
R5,908
Discovery Miles 59 080
Multiple Stars across the H-R Diagram…
Swetlana Hubrig, Monika Petr-Gotzens, …
Hardcover
R2,688
Discovery Miles 26 880
Stellar Atmospheres: Beyond Classical…
L. Crivellari, Ivan Hubeny, …
Hardcover
R5,400
Discovery Miles 54 000
|