![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering
This second edition provides new and updated methods that detail new DNA nanotechnology techniques. Chapters focus on DNA origami nanostructures for arranging matter in the nanoscale or on their manipulation with the aid of other technologies, on procedures for making nucleic acids nanostructures of different kinds, and methods to simulate complex nanostructures or to use them in biosensing. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, DNA Nanotechnology: Methods and Protocols, Second Edition aims to ensure successful results in the further study of this vital field.
The "greening" of industry processes - i.e., making them more sustainable - is a popular and often lucrative trend which has seen increased attention in recent years. Green Chemical Processes, the 2nd volume of Green Chemical Processing, covers the hot topic of sustainability in chemistry with a view to education, as well as considering corporate and environmental interests, e.g. in the context of energy production. The diverse team of authors allows for a balance between these different, but interconnected perspectives. The American Chemical Society's 12 Principles of Green Chemistry are woven throughout this text as well as the series to which this book belongs.
The book introduces fundamentals of 3D printing with light, photoinitiating system for 3D printing as well as resins. Plenty of applications, trends and prospects are also discussed, which make the book an essential reference for both scientists and industrial engineers in the research fields of photochemistry, polymer chemistry, rapid prototyping and photopolymerization.
Antimicrobial resistance is a major global public health problem. This book focuses on the clinical implications of multi-drug resistant pathogens; tracking AMR and its evolutionary significance; antifungal resistance; and current and alternative treatment strategies for AMR, including antivirulent, antibiofilm and antimicrobial resistance breakers, repurposing of drugs, and probiotic therapy. Advances in antimicrobial stewardship, antibiotic policies from a global perspective and their impacts are also discussed. The book also explores the use of omics approaches to gain insights into antibacterial resistance, and includes chapters on the potential benefits of a 'One Health approach' describing the environmental and zoonotic sources of resistant genes and their effects on the global resistance pool.
This thesis focuses on the study of interactions between protein and peptides and their potential applications in cell imaging and nanoparticle surface modification. Drawing inspiration from naturally occurring coiled-coil binding pairs, it proposes a novel covalent peptide tag and probe system, based on the concept of "affinity guided covalent conjugation." This newly established methodology provides complementary resolution to protein labeling, imaging and trafficking. By systematically investigating the coordination interaction between protein and quantum dots using various engineered protein ligands, this thesis proposes a general rule for protein self-assembly on the surface of quantum dots and reports a revolutionized nanobelt protein in accordance with this rule. It is an extraordinary example of interdisciplinary research, providing answers to real-life biological problems from a chemistry perspective.
This book presents the select proceedings of the International Conference on Functional Material, Manufacturing and Performances (ICFMMP) 2019. The book provides the state-of-the-art research, development, and commercial prospective of recent advances in materials science and engineering. The contents cover various synthesis and fabrication routes of functional and smart materials for applications in mechanical engineering, manufacturing, metrology, nanotechnology, physics, chemical and biological sciences, civil engineering, food science among others. It also provides the evolutionary behavior of materials science for industrial applications. This book will be a useful resource for researchers as well as professionals interested in the highly interdisciplinary field of materials science.
A compilation of up to date reviews of topics in biotechnology and the medical field.
This concise monograph series focuses on the implementation of various engineering principles in the conception, design, development, analysis and operation of biomedical, biotechnological and nanotechnology systems and applications. Authors are encouraged to submit their work in the following core topics, but authors should contact the commissioning editor before submitting a proposal.
Science, Virtue, and the Future of Humanity addresses each of the key public policy issues of our techno-future from the perspective of deeply informed and philosophically inclined public intellectuals. Among the issues addressed are the detachment of our idea of justice from any credible foundation; Tocqueville's prescience on how a "cognitive elite" might be the aristocracy to be most feared in our time; robotization and the possibility of being ruled by morally challenged robots; organ markets; the degradation of liberal education by obsessive techno-enthusiasm; biotechnology and biological determinism; the birth dearth and the inevitable erosion of our entitlements; the possibility that our techno-domination is basically an unfolding of the Lockean logic of our foundation; and the future of the free exercise of religion in an aggressively libertarian time. All in all, this book should provoke widespread discussion about the relationship between scientific/technological progress and the one true moral/spiritual progress that takes place over the course of every particular human life.
This book caters to the need of researchers working in the ever-evolving field of agricultural biotechnology. It discusses and provides in-depth information about latest advancements happening in this field. The book discusses evolution of plant tissue culture techniques, development of doubled haploids technology, role of recombinant-DNA technology in crop improvement. It also provides an insight into the global status of genetically modified crops, use of RNAi technology and mi-RNAs in plant improvement. Chapters are also dedicated for different branches of 'omics' science including genomics, bioinformatics, proteomics, metabolomics and phenomics along with the use of molecular markers in tagging and mapping of various genes/QTLs of agronomic importance. This book also covers the role of enzymes and microbes in agriculture in productivity enhancement. It is of interest to teachers, researchers of biotechnology and agriculture scientists. Also the book serves as additional reading material for undergraduate and postgraduate students of biotechnology, agriculture, horticulture, forestry, ecology, soil science, and environmental sciences. National and international biotechnologists and agricultural scientists will also find this to be a useful read.
Proteomics, like other post-genomics tools, has been growing at a rapid pace and has important applications in numerous fields of science. While its use in animal and veterinary sciences is still limited, there have been considerable advances in this field in recent years, in areas as diverse as physiology, nutrition and food of animal origin processing. This is mainly as a consequence of a wider availability and better understanding of proteomics methodologies by animal and veterinary researchers. This book provides a comprehensive, state-of-the-art account of the status of farm-animal proteomics research, focusing on the principles behind proteomics methodologies and its specific applications and offering clear example.
This book gives a comprehensive overview of modern hydrogenation methods used in organic synthesis. In clearly structured chapters, the authors cover the catalysts, scope and limitations of their application, and the techniques for hydrogenation of carbon-carbon, carbon-heteroatom and heteroatom-heteroatom multiple bonds.
Biomimetic engineering takes the principles of biological organisms and copies, mimics or adapts these in the design and development of new materials and technologies. Biomimetic Technologies reviews the key materials and processes involved in this groundbreaking field, supporting theoretical background by outlining a range of applications. Beginning with an overview of the key principles and materials associated with biomimetic technologies in Part One, the book goes on to explore biomimetic sensors in more detail in Part Two, with bio-inspired tactile, hair-based, gas-sensing and sonar systems all reviewed. Biomimetic actuators are then the focus of Part Three, with vision systems, tissue growth and muscles all discussed. Finally, a wide range of applications are investigated in Part Four, where biomimetic technology and artificial intelligence are reviewed for such uses as bio-inspired climbing robots and multi-robot systems, microrobots with CMOS IC neural networks locomotion control, central pattern generators (CPG's) and biologically inspired antenna arrays.
This book comprises a collection of chapters on advances in green nanomaterials. The book looks at ways to establish long-term safe and sustainable forms of nanotechnology through implementation of nanoparticle biosynthesis with minimum impact on the ecosystem. The book looks at synthesis, processing, and applications of metal and metal oxide nanomaterials and also at bio-nanomaterials. The contents of this book will prove useful for researchers and professionals working in the field of nanomaterials and green technology.
This volume contains selects papers presented during the 2nd International Conference on Environmental Geotechnology, Recycled Waste Materials and Sustainable Engineering, held in the University of Illinois at Chicago. It covers the recent innovations, trends, and concerns, practical challenges encountered, and the solutions adopted in waste management and engineering, geotechnical and geoenvironmental engineering, infrastructure engineering, and sustainable engineering. This book will be useful for academics, educators, policy makers and professionals working in the field of civil engineering, chemical engineering, environmental sciences and public policy.
This Volume presents methods for analysing and quantifying petroleum, hydrocarbons and lipids, based on their chemical and physical properties as well as their biological effects. It features protocols for extracting hydrocarbons from solid matrices, water and air, and a dedicated chapter focusing on volatile organic compounds. Several approaches for separating and detecting diverse classes of hydrocarbons and lipids are described, including: (tandem) gas chromatography (GC) coupled with mass spectrometry (MS) or flame-ionisation detection, Fourier-transform induction-coupled-resonance MS, and fluorescence-based techniques. The book details high-performance liquid chromatography MS for microbial lipids, as well as a combination of techniques for naphthenic acids. Two chapters focus on quantifying bioavailable hydrocarbon fractions by using cyclodextrin sorbents and bacterial bioreporters, respectively, while a closing chapter explains how compound-specific stable-isotope analysis can be used to measure the fate of hydrocarbons in the environment. Hydrocarbon and Lipid Microbiology Protocols There are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
What will our lives be like fifty years from now? What will we know about ourselves as humans, and how will that affect our lives? It's impossible to know the future for certain, but one thing we do know--perhaps nothing will alter our future more than the Genetics Revolution of the past thirty-five years. This book clarifies the history and examines the possible impact of five major areas of genetic research:
This book covers both basic and applied sciences in a rather
specified area of pulp and paper manufacture. The basic science of
lignocellulose enzymology and plant genetics is covered also in
many other contexts, whereas the application of biotechnology in
process and product development is thoroughly reviewed. All the
latest advances as well as new ideas of the research field are
covered. This book will serve as an updated and compact information
package of biotechnical aspects and the most recent advances of the
pulp and paper industry sector.
This book discusses recent trends and developments in the microbial conversion process, which serves as an important route for biofuel production, with particular attention to bioreactors. It combines microbial conversion with multiphase flow and mass transfer, providing an alternative perspective for the understanding of microbial biomass and energy production process as well as enhancement strategy. This book is relevant to students and researchers who work in the fields of renewable energy, engineering and biotechnology. Policymakers, economists and industry engineers also benefit from this book, as it can be used as a resource for the implementation of renewable energy technologies.
This book cover all types of microbe based polymers and their application in diverse sectors with special emphasis on agriculture. It collates latest research, methods, opinion, perspectives, and reviews dissecting the microbial origins of polymers, their production, design, and processing at industrial level, as well as improvements for specific industrial applications. Book also discusses recent advances in biopolymer production and their modification for amplifying the value. In addition, understanding of the microbial physiology and optimal conditions for polymer production are also explained. This compilation of scientific chapters on principles and practices of microbial polymers fosters the knowledge transfer among scientific communities, industries, and microbiologist and serves students, academicians, researchers for a better understanding of the nature of microbial polymers and application procedure for sustainable ecosystem
This book discusses the latest developments in plant-mediated fabrication of metal and metal-oxide nanoparticles, and their characterization by using a variety of modern techniques. It explores in detail the application of nanoparticles in drug delivery, cancer treatment, catalysis, and as antimicrobial agent, antioxidant and the promoter of plant production and protection. Application of these nanoparticles in plant systems has started only recently and information is still scanty about their possible effects on plant growth and development. Accumulation and translocation of nanoparticles in plants, and the consequent growth response and stress modulation are not well understood. Plants exposed to these particles exhibit both positive and negative effects, depending on the concentration, size, and shape of the nanoparticles. The impact on plant growth and yield is often positive at lower concentrations and negative at higher ones. Exposure to some nanoparticles may improve the free-radical scavenging potential and antioxidant enzymatic activities in plants and alter the micro-RNAs expression that regulate the different morphological, physiological and metabolic processes in plant system, leading to improved plant growth and yields. The nanoparticles also carry out genetic reforms by efficient transfer of DNA or complete plastid genome into the respective plant genome due to their miniscule size and improved site-specific penetration. Moreover, controlled application of nanomaterials in the form of nanofertilizer offers a more synchronized nutrient fluidity with the uptake by the plant exposed, ensuring an increased nutrient availability. This book addresses these issues and many more. It covers fabrication of different/specific nanomaterials and their wide-range application in agriculture sector, encompassing the controlled release of nutrients, nutrient-use efficiency, genetic exchange, production of secondary metabolites, defense mechanisms, and the growth and productivity of plants exposed to different manufactured nanomaterials. The role of nanofertilizers and nano-biosensors for improving plant production and protection and the possible toxicities caused by certain nanomaterials, the aspects that are little explored by now, have also been generously elucidated. |
![]() ![]() You may like...
Approximation and Computation - In Honor…
Walter Gautschi, Giuseppe Mastroianni, …
Hardcover
R3,114
Discovery Miles 31 140
Progress in Approximation Theory and…
Narendra Kumar Govil, Ram Mohapatra, …
Hardcover
R4,684
Discovery Miles 46 840
The Measurement of Association - A…
Kenneth J. Berry, Janis E. Johnston, …
Hardcover
R4,719
Discovery Miles 47 190
Quantitative Data Analysis - A Companion…
Willem Mertens, Amedeo Pugliese, …
Hardcover
R3,014
Discovery Miles 30 140
Topology Optimization Theory for Laminar…
Yongbo Deng, Yihui Wu, …
Hardcover
R5,042
Discovery Miles 50 420
|