![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering
Biomaterials in Endodontics offers an up-to-date overview of endodontic biomaterials and their applications in regenerative medicine and tissue engineering. This book details the key biomaterials used in clinical endodontics and the benefits and challenges of using these materials, from root canal obturation materials to alloys for endodontic files and hand instruments. Chapters also offer a unique insight into the regenerative applications of endodontic biomaterials, such as the use of stem cells and growth factors for bone regeneration. Biomaterials in Endodontics is a useful resource for researchers working in biomedical engineering, regenerative medicine, and materials science with an interest in dentistry and bone regeneration. This book is also a helpful guide for endodontists, dentists, dental scientists, and clinicians with an interest in biomaterials for endodontics.
Innovation Strategies for the Food Industry: Tools for Implementation, Second Edition explores how process technologies and innovations are implemented in the food industry, by i.e., detecting problems and providing answers to questions of modern applications. As in all science sectors, Internet and big data have brought a renaissance of changes in the way academics and researchers communicate and collaborate, and in the way that the food industry develops. The new edition covers emerging skills of food technologists and the integration of food science and technology knowledge into the food chain. This handbook is ideal for all relevant actors in the food sector (professors, researchers, students and professionals) as well as for anyone dealing with food science and technology, new products development and food industry.
Handbook of Microbial Nanotechnology is a collection of the most recent scientific advancements in the fundamental application of microbial nanotechnology across various sectors. This comprehensive handbook highlights the vast subject areas of microbial nanotechnology and its potential applications in food, pharmacology, water, environmental remediation, etc. This book will serve as an excellent reference handbook for researchers and students in the food sciences, materials sciences, biotechnology, microbiology and in the pharmaceutical fields. Microbial nanotechnology is taking part in creating development and innovation in various sectors. Despite the participation of microbial nanotechnology in modern development, there are some hindrances. The lack of information, the possibility of adverse impacts on the environment, human health, safety and sustainability are still a challenge. This handbook addresses these challenges.
Advanced Nanomaterials for Point of Care Diagnosis and Therapy provides an overview of technological and emerging novel trends in how point-of-care diagnostic devices are designed, miniaturized built, and delivered at different healthcare set ups. It describes the significant technological advances in fundamental diagnostic components and recent advances in fully integrated devices designed for specific clinical use. The book covers state-of-the-art fabrication of advances materials with broad spectrum therapeutic applications. It includes drug delivery, biosensing, bioimaging and targeting, and outlines the development of inexpensive, effective and portable in vitro diagnostics tools for any purpose that can be used onsite. Sections also discuss drug delivery, biosensing, bioimaging and targeting and various metal, metal oxide and non-metal-based nanomaterials that are developed, surface modified, and are being explored for diagnosis, targeting, drug delivery, drug release and imaging. The book concludes with current needs and future challenges in the field.
Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources: Status and Innovation covers all important technological aspects of the production of biochemicals from renewable feedstock. All the important technological aspects of biomass conversion for example biomass pretreatment, enzymatic hydrolysis for cellulosic sugars production followed by the fermentation into chemicals and downstream recovery of the products is reviewed. Recent technological advancements in suitable microorganism development, bioprocess engineering for biomass conversion for cellulosic sugars production and various fermentation strategies and downstream recovery of these top 12 products is presented. Each bio-chemical selected by US Department of Energy i.e. ethanol, xylitol/sorbitol, furans (5-HMF, 2,5-FDCA,), glycerol & its derivatives, hydrocarbons) isoprene, iso-butadienes and others), lactic acid, succinic acid, 3-hydroxy propionic acid, levulinic acid and biohydrogen/biogas is included in a single book chapter. In addition to the technical aspects of these 12 biochemicals, general technological challenges dealing with lignocellulose refining, perspectives and solutions are elaborated in the book. Also, life cycle analysis, techno-economic viability, and sustainability index of biofuels/biochemicals are comprehensively reviewed in the book.
Nano-Enabled Agrochemicals in Agriculture presents a targeted overview of the safe implementation of nanotechnologies within agricultural and horticultural settings, with the purpose of achieving enhanced production while maintaining ecological integrity. The growing global request for agricultural crops and products requires high standards of quality and safety, which has stimulated the search for new technologies that preserve their quality and delay their decomposition. Nanotechnology may boost plant production by improving nutrient uptake/use efficiency with nanoformulations of fertilizers and agrochemicals for plant enhancement, detection and treatment of diseases, and host-parasite interactions at the molecular level using nanosensors. It also may improve plant disease diagnostics, removal of contaminants from soil and water, postharvest management of vegetables and flowers, and reclamation of salt-affected soils. Although the markets for nanoproducts and nanoformulations continue to increase, there are also growing concerns regarding the fate and behavior of nanomaterials in environmental systems. Exploring important topics related to nanotechnology and nanomaterials, the book includes the use of nanochemicals in insect pest management, as nanofungicides, nanoherbicides, micronutrient supply, and nanosensors to monitor crop and soil health conditions, from detection of agrochemicals to their slow release of agrochemicals, and their impact on related environs. This book will serve as an excellent resource for a wide range of plant scientists who have concerns about nanomaterial interactions with terrestrial and aquatic plants.
Stimuli-Responsive Nanocarriers: Recent Advances in Tailor-Made Therapeutics compiles dispersed knowledge into a complete and comprehensive source to help researchers understand and progress stimuli-responsive nanocarriers. The book contains recent advancements made in the field of stimuli-responsive nanocarriers with their application in controlled drug delivery against various diseases. It focuses on the design, mechanism, construction, therapeutic application and future challenges of stimuli-responsive nanocarriers which will help new researchers in designing next generation tailor-made advanced therapeutics. Finally, the book covers future aspects and challenges present in the route of development of stimuli responsive nanocarriers for disease therapeutics. Various recent advances and biomedical applications assembled in this book will guide scientists on how to design and develop novel controlled drug release systems.
Nanotherapeutics in Cancer Vaccination and Challenges consolidates the current research on cancer nanomedicine and therapeutic cancer vaccination to explore the most effective and promising avenues. The book covers cancer vaccines before exploring nanotherapeutics, DNA and mRNA vaccines in cancer treatment. Finally, it considers regulatory and industrial perspectives on cancer vaccination and nanotherapeutics. This resource will be useful for pharmaceutical scientists and researchers focused on biomedical engineering, chemical engineering, vaccine development, and cancer immunotherapy, along with advanced students in these subjects. Cancer is arguably the most complex and challenging disease known to mankind. Over the last two-decades, significant advancements have been made in new and novel concepts of cancer nanomedicines. Therapeutic cancer vaccines may be utilized to inhibit further growth of advanced cancers and/or relapsed tumors that are refractory to conventional therapies, such as surgery, radiation therapy and chemotherapy.
Biomass conversion into drop-in chemicals using novel heterogeneous bulk- and nano-scale catalysts is currently a hot research topic with the aim of replacing petrochemicals in the chemical industry. Considering the importance of this subject to the scientific community, Advanced Catalysis for Drop-in Chemicals provides the latest developments in the catalytic synthesis of drop-in chemicals mainly from lignocellulose, carbohydrates (cellulose, hemicellulose, C6 and C5 sugars, and their derivatives), lignin, and glycerol. The role of both heterogeneous bulk solid and nanostructured catalysts, along with their advantages and disadvantages for drop-in chemicals synthesis are critically summarized. Addressing the frontiers and prospects for using drop-in chemicals in place of petrochemicals in the chemical industry is also a key topic of this book.
Cognitive Models for Sustainable Environment reviews the fundamental concepts of gathering, processing and analyzing data from batch processes, along with a review of intelligent and cognitive tools that can be used. The book is centered on evolving novel intelligent/cognitive models and algorithms to develop sustainable solutions for the mitigation of environmental pollution. It unveils intelligent and cognitive models to address issues related to the effective monitoring of environmental pollution and sustainable environmental design. As such, the book focuses on the overall well-being of the global environment for better sustenance and livelihood. The book covers novel cognitive models for effective environmental pollution data management at par with the standards laid down by the World Health Organization. Every chapter is supported by real-life case studies, illustrative examples and video demonstrations that enlighten readers.
Biomass, Biochemicals, Biofuel: Climate Change Mitigation: Sequestration of Green House Gases is designed to not only give basic knowledge on the topics presented, but also to enlighten on conventional and advanced technologies, socioeconomic aspects, techno-economic feasibility, models and modeling tools, and detailed LCA approaches in the sequestration of GHGs for biofuel and biomaterials, including biopolymer production. These innovative technologies and novel prospective directly find applications in day-to-day practices. The book is a useful guide to politicians, researchers, teachers and waste management practitioners. It offers a treasure of knowledge to guide readers on the importance of GHGs sequestration in important areas. The issue of climate change is gaining much more attention by researchers, public, politicians and others. Climate change is one of the most complex issues the world is facing today. It has implications across society, including in science, technology, economics, society, politics, and moral and ethical dilemmas.
A systematic overview of the quickly developing field of bioengineering--with state-of-the-art modeling software! Computational Modeling and Simulation Examples in Bioengineering provides a comprehensive introduction to the emerging field of bioengineering. It provides the theoretical background necessary to simulating pathological conditions in the bones, muscles, cardiovascular tissue, and cancers, as well as lung and vertigo disease. The methodological approaches used for simulations include the finite element, dissipative particle dynamics, and lattice Boltzman. The text includes access to a state-of-the-art software package for simulating the theoretical problems. In this way, the book enhances the reader's learning capabilities in the field of biomedical engineering. The aim of this book is to provide concrete examples of applied modeling in biomedical engineering. Examples in a wide range of areas equip the reader with a foundation of knowledge regarding which problems can be modeled with which numerical methods. With more practical examples and more online software support than any competing text, this book organizes the field of computational bioengineering into an accessible and thorough introduction. Computational Modeling and Simulation Examples in Bioengineering: Includes a state-of-the-art software package enabling readers to engage in hands-on modeling of the examples in the book Provides a background on continuum and discrete modeling, along with equations and derivations for three key numerical methods Considers examples in the modeling of bones, skeletal muscles, cartilage, tissue engineering, blood flow, plaque, and more Explores stent deployment modeling as well as stent design and optimization techniques Generates different examples of fracture fixation with respect to the advantages in medical practice applications Computational Modeling and Simulation Examples in Bioengineering is an excellent textbook for students of bioengineering, as well as a support for basic and clinical research. Medical doctors and other clinical professionals will also benefit from this resource and guide to the latest modeling techniques.
Current Developments in Biotechnology and Bioengineering: Technologies for Production of Nutraceuticals and Functional Food Products covers a wide range of topics related to the the microbial process for the production of high- value nutraceuticals and fermented functional foods. This reference includes the bioactive compounds derived from the foods substrate, including bioactive peptides, transformed polyphenols, oligosaccharides, prebiotics, and functional lipids. Scientific information related to the recombinant microorganisms and their role in the production of nutraceutical and functional foods are also included. The translational aspects of microbial bioprocess technologies are illustrated, by emphasizing the current requirements and future perspectives of industrial and food biotechnology. Edited by a group of experienced Eeditors and contributors, Technologies for Production of Nutraceuticals and Functional Food Productsthe book gives scientists and engineers the translational aspects of microbial processes for the development of functional foods and high- value nutraceuticals with future perspectives.
Titanium Alloys for Biomedical Development and Applications: Design, Microstructure, Properties and Application systematically introduces basic theories and progress in the research of biomedical ss-Ti alloys achieved by researchers from different fields. It focuses on a high-strength and low elastic modulus biomedical ss-Ti alloy (TLM), etc. designed by the authors. The alloy design methods, microstructural characteristics, mechanical properties, surface treatment methods and biocompatibility of the TLM alloy are discussed in detail, along with a concise description of the medical devices made from this alloy and the application examples. This book will appeal to researchers as well as students from different disciplines, including materials science, biology, medicine and engineering fields.
New and Future Developments in Microbial Biotechnology and Bioengineering: Sustainable Agriculture: Revitalization through Organic Products provides a comprehensive overview of different organic products which work as plant biostimulants, i.e., protein hydrolysates, chitosan, microbial derived exopolysaccharides, pectin, nanoparticles, etc. In addition, detailed insights in their mechanisms for plant growth promotion and stress alleviation are covered. This volume further discusses the extraction and formulation of organic products for use in sustainable agriculture. The application of microbial derived secondary metabolites in crop protection is also extensively covered. This book will be ideal for agrochemists, biotechnologists, biochemists, industrialists, researchers and scientists working on organic farming.
Early diagnosis of cancer and other non-oncological disorders gives a significant advantage for curing the disease and improving patient's life expectancy. Recent advances in biosensor-based techniques which are designed for specific biomarkers can be exploited for early diagnosis of diseases. Biosensor Based Advanced Cancer Diagnostics covers all available biosensor-based approaches and comprehensive technologies; along with their application in diagnosis, prognosis and therapeutic management of various oncological disorders. Besides this, current challenges and future aspects of these diagnostic approaches have also been discussed. This book offers a view of recent advances and is also helpful for designing new biosensor-based technologies in the field of medical science, engineering and biomedical technology. Biosensor Based Advanced Cancer Diagnostics helps biomedical engineers, researchers, molecular biologists, oncologists and clinicians with the development of point of care devices for disease diagnostics and prognostics. It also provides information on developing user friendly, sensitive, stable, accurate, low cost and minimally invasive modalities which can be adopted from lab to clinics. This book covers in-depth knowledge of disease biomarkers that can be exploited for designing and development of a range of biosensors. The editors have summarized the potential cancer biomarkers and methodology for their detection, plus transferring the developed system to clinical application by miniaturization and required integration with microfluidic systems.
Nanotechnology in Medicine and Biology brings together a multidisciplinary team of experts from the fields of materials science, nanotechnology, medicine and biomedical engineering to introduce new nanoscale biomaterials and their applications, diagnosis and treatment of disorders of the human body. The book presents the fundamentals for understanding the design, properties and selection of nanobiomaterials as well as their real-world applications in medicine. Each chapter addresses current regulations, manufacturing processes, and translation issues of nanobiomaterials for key applications. A discussion of current protocols and their benefits and disadvantages is also included. This book provides comprehensive background and knowledge in the field of nanobiomaterials that is suitable for academics, scientists and clinicians.
Photocatalytic Systems by Design: Materials, Mechanisms and Applications explores various aspects of photocatalysis, including the photocatalytic phenomenon and process, applications, and the design of photocatalysts via band gap engineering. The book also covers band edge position engineering for multiple photocatalytic applications, such as pollutant degradations, hydrogen production, CO2 reduction into hydrocarbon fuels, antimicrobial disinfections, organic synthesis, N2 fixation, and more. This book is designed to enable beginners to learn the concepts and applications of photocatalysis. Unlike conventional books on photocatalysis, the book provides a 360 Degrees perspective into the field of photocatalysis and serves as an informative handbook for all audiences.
Photocatalytic Degradation of Dyes: Current Trends and Future Perspectives covers in detail current trends and future aspects on photocatalytic degradation of organic dyes using novel photocatalytic techniques such as metallic nanoparticles, heterogeneous and hybrid systems using visible light irradiation. It highlights the most recent scientific and technological achievements and importance of degradation of dyes in the textile effluent by simple environmental friendly approaches using eco-friendly catalysts. It is of assistance to everyone interested in bioremediation of effluents: professionals, consulting engineers, academicians, and research scholars as well.
Advances in Applied Microbiology, Volume 117 continues the comprehensive reach of this widely read and authoritative review source in microbiology. Users will find invaluable references and information on a variety of areas relating to the topic of microbiology.
This book provides a comprehensive overview of different agriculturally important microorganisms and their role as plant biostimulants. Arbuscular Mycorrhizal Fungi, Trichoderma, Cyanobacteria, Endophytes, and Plant growth promoting rhizobacteria have the potential to promote plant growth, disease management, nutrient acquisition, stress alleviation, and soil health management. Presenting an all-inclusive collection of information, this book will be important for students, academicians, researchers working in the field of sustainable agriculture, microbial technology, and biochemical engineers. It will also be of use for policymakers in the area of food security and sustainable agriculture.
Tailor-Made and Functionalized Biopolymer Systems: For Drug Delivery and Biomedical Applications covers the design and application of these functionalized and tailor-made biopolymers and biopolymer systems intended for drug delivery and biomedical applications. Various concepts, design protocols and biomedical applications of tailor-made biopolymer systems are covered, guiding the reader from theoretical knowledge to practical application. Authored by an array of experts from global institutions, this book offers an interdisciplinary approach to how tailor-made biopolymers lead to novel drug delivery and treatment solutions. This will be a useful reference to a broad audience, including biomedical engineers, materials scientists, pharmacologists and chemists.
Colloidal Foundations of Nanoscience, Second Edition explores the theory and concepts of colloid chemistry and its applications to nanoscience and nanotechnology. The book provides the essential conceptual and methodological tools to approach nano-research issues. The authors' expertise in colloid science will contribute to the understanding of basic issues involved in research. Each chapter covers a classical subject of colloid science in simple and straightforward terms, addressing its relevance to nanoscience before introducing case studies. Sections cover colloids rheology, electrokinetics, nanoparticle tracking analysis (NTA), bio-layer interferometry, and the treatment of inter-particle interactions and colloidal stability. |
You may like...
Current Trends in Operator Theory and…
Joseph A Ball, J.William Helton, …
Hardcover
R4,348
Discovery Miles 43 480
The Oxford Handbook of European Union…
Anthony Arnull, Damian Chalmers
Hardcover
R5,125
Discovery Miles 51 250
Bridging the Prosperity Gap in the EU…
Ulf Bernitz, Moa Martensson, …
Hardcover
R3,569
Discovery Miles 35 690
Flood Risk Management and Response
David Proverbs, C.A. Brebbia
Hardcover
R3,354
Discovery Miles 33 540
Stadia Arenas and Grandstands - Design…
P. Thompson, J. Tolloczko, …
Hardcover
R10,585
Discovery Miles 105 850
Exceptional Music Pedagogy for Children…
Deborah VanderLinde Blair, Kimberly A. McCord
Hardcover
R3,767
Discovery Miles 37 670
Engineering Probabilistic Design and…
R. Cooke, M. Mendel, …
Hardcover
R2,772
Discovery Miles 27 720
|