![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering
Implantable sensor systems offer great potential for enhanced
medical care and improved quality of life, consequently leading to
major investment in this exciting field. Implantable sensor systems
for medical applications provides a wide-ranging overview of the
core technologies, key challenges and main issues related to the
development and use of these devices in a diverse range of medical
applications.
The field of antibody engineering has become a vital and integral
part of making new, improved next generation therapeutic monoclonal
antibodies, of which there are currently more than 300 in clinical
trials across several therapeutic areas. Therapeutic antibody
engineering examines all aspects of engineering monoclonal
antibodies and analyses the effect that various genetic engineering
approaches will have on future candidates. Chapters in the first
part of the book provide an introduction to monoclonal antibodies,
their discovery and development and the fundamental technologies
used in their production. Following chapters cover a number of
specific issues relating to different aspects of antibody
engineering, including variable chain engineering, targets and
mechanisms of action, classes of antibody and the use of antibody
fragments, among many other topics. The last part of the book
examines development issues, the interaction of human IgGs with
non-human systems, and cell line development, before a conclusion
looking at future issues affecting the field of therapeutic
antibody engineering.
Protein folding is a process by which a protein structure assumes
its functional shape of conformation, and has been the subject of
research since the publication of the first software tool for
protein structure prediction. Protein folding in silico approaches
this issue by introducing an ab initio model that attempts to
simulate as far as possible the folding process as it takes place
in vivo, and attempts to construct a mechanistic model on the basis
of the predictions made. The opening chapters discuss the early
stage intermediate and late stage intermediate models, followed by
a discussion of structural information that affects the
interpretation of the folding process. The second half of the book
covers a variety of topics including ligand binding site
recognition, the "fuzzy oil drop" model and its use in simulation
of the polypeptide chain, and misfolded proteins. The book ends
with an overview of a number of other ab initio methods for protein
structure predictions and some concluding remarks.
Developments in tissue engineered and regenerative medicine
products summarizes recent developments in tissue engineering and
regenerative medicine with an emphasis on commercialization and
product development. Features of current cell therapy and tissue
engineered products which have facilitated successful
commercialization are emphasized and roadblocks to successful
product development are also highlighted. Preclinical and clinical
testing of tissue engineered and regenerative medicine products,
regulatory, quality control, manufacturing issues, as well as
generating and securing intellectual property and freedom to
operate considerations are presented. This book represents a
complete 'how-to' manual for the development of tissue engineered
and regenerative medicine products from conceptualization to
clinical trial to manufacturing.
Since the first publication of this definitive work nearly 40 years ago, this fourth edition has been completely rewritten. Crystallization is used at some stage in nearly all process
industries as a method of production, purification or recovery of
solid materials.
This volume in the Coulson and Richardson series in chemical
engineering contains full worked solutions to the problems posed in
volume 1. Whilst the main volume contains illustrative worked
examples throughout the text, this book contains answers to the
more challenging questions posed at the end of each chapter of the
main text.
Thermodynamic property data are important in many engineering applications in the chemical processing and petroleum refining industries. The "Handbook of Thermodynamic Diagrams" series presents volume and enthalpy diagrams (graphs) for the major organic chemicals and hydrocarbons, as well as the major inorganic compounds and elements. The graphs, arranged by carbon number and chemical formula, cover a wide range of pressures and temperatures to enable engineers to determine quickly values at various points. This volume covers inorganic compounds and elements.
DNA sequence specificity is a sub-specialty in the general area of
molecular recognition. This area includes macromolecular-molecular
interactions (e.g., protein-DNA), oligomer-DNA interacitons (e.g.,
triple strands), and ligand-DNA interactions (e.g., drug-DNA). It
is this latter group of DNA sequence specificity interactions that
is the subject of Volumes 1 and 2 of "Advances in DNA Sequence
Specific Agents." As was the case for Volume 1, Part A also covers
methodology, but in Volume 2 we include calorimetric titrations,
molecular modeling, X-ray crystallographic and NMR structural
studies, and transcriptional assays. Part B also follows the same
format as Volume 1 and describes the sequence specificities and
covalent and noncovalent interactions of small ligands with
DNA.
This series provides engineers with vapor pressure data for process design, production, and environmental applications.
This reference provides engineers with values for thermal conductivity as a function of temperature for the major organic compounds.
Gene probes, whether RNA or DNA, have played a central role in the rapid development of molecular biology. The wide variety of applications is matched by a considerable diversity in the methods used for generating probes, a complete account of which would be very difficult to make. Instead, this second volume in the series combines a selection of newer gene probe procedures with a review of the most important established methods, together with some examples of the ways in which gene probes can be applied. In doing so, the book aims to act not only as an introductory manual for newcomers to the field, but also as a means of broadening the horizons of existing researchers.
This series provides engineers with liquid and gas viscosities for the major organic compounds as a function of temperature. The graphs are arranged by chemical formula to provide ease of use; many of them cover the full range from melting point to boiling point to critical point. Common units are used, but each graph displays a conversion factor to provide English units.
The book "Green Technologies for the Environment" brings together experts in the field of biotechnology, chemistry, chemical engineering, environmental engineering and toxicology from both academia and industry, to discuss green processes for the environment. The topics included finding replacements for crude oil to meet both our energy needs as well as the supply of chemicals for the production of essential products, advances in chemical processing, waste valorization, alternative solvents, and developments in homogeneous and heterogeneous catalysis as well as enzyme-based processes for chemical transformations. Advances in green chemistry concepts will further enhance the field through the design of new chemicals and solvents. In addition, obtaining a better understanding of the mechanistic pathways involved in various reactions is essential toward advances in the field. The goal of the work described in each of the chapters is to address the need for best practices for chemical processes and for the production of chemicals, while promoting sustainability.
Chiral molecules are ubiquitous in nature. Thus, it is not surprising to come across this phenomenon in the world of flavor substances. This book provides an overview on the analytical procedures currently applied to analyze chiral flavor substances at trace levels. It demonstrates several examples for the application of these techniques to determine naturally occurring enantiomeric compositions of chiral key flavor compounds in various natural systems. In addition to the analytical aspects, the contributions focus on the sensory properties of enantiomers and enlarge our knowledge on the correlation between configurations and odor properties and intensities of chiral flavor compounds. The practical importance of the topic is reflected by a discussion of merits and limitations of chiral analysis for the authenticity control of food flavorings. In addition, examples for the use of enzymes and microorganisms to obtain enantiopure flavor substances and thus to meet legal requirements for "natural" labeling are presented. Finally, the book covers aspects recently getting more and more in the focus of flavor science: What are the physiological mechanisms underlying the perception of sensory properties and does chirality matter in that respect?
Climate change is a major challenge facing modern society. The chemistry of air and its influence on the climate system forms the main focus of this book. Vol. 2 of Chemistry of the Climate System takes a problem-based approach to presenting global atmospheric processes, evaluating the effects of changing air compositions as well as possibilities for interference with these processes through the use of chemistry.
Smart Polymeric Nano-Constructs in Drug Delivery: Concept, Design and Therapeutic Applications provides a thorough discussion of the most state of the art material and polymer exploitations for the delivery of bioactive(s) as well as their current and clinical status. The book enables researchers to prepare a variety of smart drug delivery systems to investigate their properties as well as to discover their uses and applications. The novelty of this approach addresses an existing need of exhaustively understanding the potential of the materials including polymeric drug delivery systems that are smartly designed to deliver bioactive(s) into the body at targeted sites without showing side effects. The book is helpful for those in the health sector, specifically those developing nanomedicine using smart material-based nano-delivery systems. Polymers have unique co-operative properties that are not found with low-molecular-weight compounds along with their appealing physical and chemical properties, constituting the root of their success in drug delivery. Smart Polymeric Nano-Constructs in Drug Delivery: Concept, Design and Therapeutic Applications discusses smart and stimuli responsive polymers applicable in drug delivery, followed detailed information about various concepts and designing of polymeric novel drug delivery systems for treatment of various type of diseases, also discussing patents related to the field. The book helps readers to design and develop novel drug delivery systems based on smart materials for the effective delivery of bioactive that take advantage of recent advances in smart polymer-based strategies. It is useful to those in pharmaceutical sciences and related fields in developing new drug delivery systems.
De novo Peptide Design: Principles and Applications presents the latest developments in the fields of therapeutic peptides and bio-nanotechnology. The title focuses on the design of peptides, particularly how peptides may be tailored to specific functions. It includes computational and experimental protocols to assist in the design of peptides. Sections cover the basics of protein and peptide structure, modeling and simulation, solid phase peptide synthesis, peptide-based antibiotics, drug delivery, peptide nanomaterials, aromatic interactions directing nano-assembly, protein/peptide aggregation, therapeutic interventions against protein/peptide aggregation diseases, peptide based hydrogels, computational tools and algorithms for peptide design, and experimental protocols in peptide chemistry. In addition, the book covers key aspects in peptide design, providing a solution for researchers working within the 'peptidic universe' to create new therapeutic agents.
Polysaccharide-Based Hydrogels: Synthesis, Characterization and Applications looks at the synthesis, characterization and application of polysaccharide-based materials in a broad array of fields. The book discusses the role of polysaccharides in the preparation of hydrogels, the use of hydrogel-based green materials, and their applications in biomedical applications, drug delivery, water purification techniques, food industries, agricultural fields, and pharmaceuticals applications. Written by leading experts in this field, this book will be a valuable reference for scientists, academicians, researchers, technologists, consultants and policymakers.
Nanostructured Materials for Tissue Engineering introduces the key properties and approaches involved in using nanostructured materials in tissue engineering, including functionalization, nanotechnology-based regenerative techniques, toxicological and biocompatible aspects. A broad range of nanomaterial types are covered, from polymer scaffolds and nanocomposites to gold nanoparticles and quantum dots. This book aids the reader in materials selection, as well as matching to the best applications, including bone, skin, pulmonary or neurological tissue engineering. Users will find this book to be an up-to-date review on this fast-changing field that is ideal for materials scientists, tissue engineers, biomedical engineers, and pharmaceutical scientists.
Bioengineered Nanomaterials for Wound Healing and Infection Control is a key reference for those working in the fields of materials science, pharmacy, nanotechnology, biomedical engineering and microbiology. Bioengineered nanomaterials have unique physicochemical properties which promote accelerated wound healing and treatment of infections. The biosynthesis of these nanomaterials also offers a clean, safe and renewable alternative to traditional nanomaterials, helping reduce environmental impact alongside antibacterial resistance.
Valorization of Wastes for Sustainable Development: Waste to Wealth highlights the various valorization of organic and non-organic waste to offer a way forward to a sustainable world. Categorizing the various types of waste valorization for renewable fuel production and other valorizations utilizing organic and non-organic waste, this book offers the reader a comprehensive view of various waste valorizations together with their potential applications. Split into four sections, the book's chapters cover the general scenarios and challenges of current waste management and the valorization of waste specifically for renewable fuels as the alternative energy source to depleting fossil fuels. Other chapters cover waste valorizations categorized into organic and non-organic waste for various applications and the future prospect of waste valorizations with possible plans and strategies for effective global waste management.
Four-Membered Heterocycle Synthesis offers a comprehensive approach to these unstable organic compounds, providing a systematic introduction to the synthesis and reactions of all common four-membered heterocycles and illustrating different methods to prepare specific four-membered heterocycles. Four-membered heterocyclic compounds are known as a class of unstable organic compounds because of their strain characteristics, which make them very beneficial as precursors for the formation of a broad range of complex heterocyclic molecules and for synthetic elaboration. |
![]() ![]() You may like...
Applications of Bat Algorithm and its…
Nilanjan Dey, V. Rajinikanth
Hardcover
R4,348
Discovery Miles 43 480
Advances in Business ICT: New Ideas from…
Tomasz Pelech-Pilichowski, Maria Mach-Krol, …
Hardcover
Geometric Partial Differential Equations…
Andrea Bonito, Ricardo H. Nochetto
Hardcover
The Effect - An Introduction to Research…
Nick Huntington-Klein
Hardcover
R2,802
Discovery Miles 28 020
Research Methodology and Quantitative…
Gadiraju Nageswara Rao
Hardcover
|