![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Biochemistry
Proteins are the cell's workers, their messengers and overseers. In these roles, proteins specifically bind small molecules, nucleic acid and other protein partners. Cellular systems are closely regulated and biologically significant changes in populations of particular protein complexes correspond to very small variations of their thermodynamics or kinetics of reaction. Interfering with the interactions of proteins is the dominant strategy in the development of new pharmaceuticals. Protein Ligand Interactions: Methods and Applications, Second Edition provides a complete introduction to common and emerging procedures for characterizing the interactions of individual proteins. From the initial discovery of natural substrates or potential drug leads, to the detailed quantitative understanding of the mechanism of interaction, all stages of the research process are covered with a focus on those techniques that are, or are anticipated to become, widely accessible and performable with mainstream commercial instrumentation. Written in the highly successful Methods in Molecular Biology series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Protein Ligand Interactions: Methods and Applications, Second Edition serves as an ideal guide for researchers new to the field of biophysical characterization of protein interactions - whether they are beginning graduate students or experts in allied areas of molecular cell biology, microbiology, pharmacology, medicinal chemistry or structural biology.
This volume provides a comprehensive study of this key method of gel-based proteomics. Chapters in Difference Gel Electrophoresis: Methods and Protocols detail methods on principles of differential protein labeling, two-dimensional gel electrophoresis, techniques on optimized proteomic workflows, advanced mass spectrometry for protein identification, application of basic biological research, and applied biomarker discovery. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Difference Gel Electrophoresis: Methods and Protocols aims to ensure successful results in the further study of this vital field.
This volume presents the most recent technologies used in the Polycomb Group Proteins (PcG) field. Chapters detail state-of-the-art methods, creating a unique and comprehensive reference source for investigating Polycomb function in the nucleus. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Polycomb Group Proteins: Method and Protocols aims to ensure successful results in the further study of this vital field.
This book provides a selection of recently developed methods and protocols in bacterial glycomics to aid in bettering our understanding of the structures and functions of bacterial polysaccharides, their attachments to proteins and lipids, their role in biofilm formation, as well as their biosynthesis. With the emerging bacterial resistance to commonly used antibiotics world-wide, these techniques to study the outer polysaccharides of bacteria, with their functions in bacterial adhesion, colonization, growth, establishment of biofilms, and control virulence and pathogenicity, are increasingly important. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Bacterial Polysaccharides: Methods and Protocols aims to support researchers contributing to future approaches that will fill our knowledge gaps and define anti-bacterial targets.
This book will focus on the differentiation and regulation of subsets of CD4+ T cells. It will also cover other aspects of research on these cells, which has made great advances in recent years, such as subsets' plasticity and their role in healthy and disease conditions. The book provides researchers and graduate students with a cutting-edge and comprehensive overview of essential research on CD4+ T cells.
This volume is comprised of 18 chapters, covering various aspects of DNA modification and RNA modified bases. It also discusses in detail circular RNA, therapeutic oligonucleotides and their different properties. The chemical nature of DNA, RNA, protein and lipids makes these macromolecules easily modifiable, but they are also susceptible to damage from both endogenous and exogenous agents. Alkylation and oxidation show a potential to disrupt the cellular redox equilibrium and cause cellular damage leading to inflammation and even chronic disease. Furthermore, DNA damage can drive mutagenesis and the resulting DNA sequence changes can induce carcinogenesis and cancer progression. Modified nucleosides can occur as a result of oxidative DNA damage and RNA turnover, and are used as markers for various diseases. To function properly some RNA needs to be chemically modified post-transcriptionally. Dysregulation of the RNA-modification pattern or of the levels of the enzymes that catalyze these modifications alters RNA functionality and can result in complex phenotypes, likely due to defects in protein translation. While modifications are best characterized in noncoding ribonucleic acids like tRNA and rRNA, coding mRNAs have also been found to contain modified nucleosides. This book is a valuable resource, not only for graduate students but also researchers in the fields of molecular medicine and molecular biology.
This book presents the current concepts of semaphorin biology. In the early 1990s, semaphorins were originally identified as axon guidance cues that function during neuronal development. However, cumulative findings have clarified that they have diverse functions in many physiological processes, including cardiogenesis, angiogenesis, vasculogenesis, osteoclastogenesis, retinal homeostasis, and immune regulation. Additionally, they have been implicated in the pathogenesis of various human diseases, including tumorigenesis/tumor metastasis, neuroregenerative diseases, retinal degeneration, irregular pulse/sudden death, and immune disorders. Based on this current research background, the book covers the essential state-of-the-art findings for basic scientists in biochemistry, molecular biology, neuroscience, developmental biology, and structural biology, as well as for physicians in neurology, cardiology, oncology, orthopedic surgery, otorhinolaryngology, ophthalmology, allergology, and rheumatology.
This book summarizes the recent advances in applications of starch in state-of-the-art drug carriers (hydrogel, micro- and nano-particulate carriers) with stimulus-responsive and target-specific properties. It also highlights the role of starch and its derivatives in transmucosal administration to improve the bioavailability of drugs. Further, it outlines the principles of effective, advanced, starch-based drug delivery systems and illustrates how these principles are key to the development of future drug delivery strategies. This interesting reference resource is useful for students, researchers and engineers in the fields of carbohydrate chemistry, polymer sciences and drug delivery.
"Bio-Nanoimaging: Protein Misfolding & Aggregation" provides a unique introduction to both novel and established nanoimaging techniques for visualization and characterization of misfolded and aggregated protein species. The book is divided into three sections covering: - Nanotechnology and nanoimaging technology, including cryoelectron microscopy of beta(2)-microglobulin, studying amyloidogensis by FRET; and scanning tunneling microscopy of protein deposits - Polymorphisms of protein misfolded and aggregated species, including fibrillar polymorphism, amyloid-like protofibrils, and insulin oligomers - Polymorphisms of misfolding and aggregation processes, including multiple pathways of lysozyme aggregation, misfolded intermediate of a PDZ domain, and micelle formation by human islet amyloid polypeptide Protein misfolding and aggregation is a fast-growing frontier in
molecular medicine and protein chemistry. Related disorders include
cataracts, arthritis, cystic fibrosis, late-onset diabetes
mellitus, and numerous neurodegenerative diseases like Alzheimer's
and Parkinson's. Nanoimaging technology has proved crucial in
understanding protein-misfolding pathologies and in potential drug
design aimed at the inhibition or reversal of protein aggregation.
Using these technologies, researchers can monitor the aggregation
process, visualize protein aggregates and analyze their
properties.
Since its inception in 1945, this serial has provided critical
and informative articles written by research specialists that
integrate industrial, analytical, and technological aspects of
biochemistry, organic chemistry, and instrumentation methodology in
the study of carbohydrates. The articles provide a definitive
interpretation of the current status and future trends in
carbohydrate chemistry and biochemistry.
Since its inception in 1945, this serial has provided critical
and informative articles written by research specialists that
integrate industrial, analytical, and technological aspects of
biochemistry, organic chemistry, and instrumentation methodology in
the study of carbohydrates. The articles provide a definitive
interpretation of the current status and future trends in
carbohydrate chemistry and biochemistry.
First published in 1943, "Vitamins and Hormones" is the longest-running serial published by Academic Press. The Series provides up-to-date information on vitamin and hormone research spanning data from molecular biology to the clinic. A volume can focus on a single molecule or on a disease that is related to vitamins or hormones. A hormone is interpreted broadly so that related substances, such as transmitters, cytokines, growth factors and others can be reviewed. This volume focuses on endocrine disrupters. Key features: Expertise of the contributorsCoverage of a vast array of subjectsIn depth current information at the molecular to the clinical levelsThree-dimensional structures in colorElaborate signaling pathways "
Protein Design: Method and Applications, Second Edition expands upon the previous edition with current, detailed ideas on how to approach a potential protein design project. With new chapters on metals as structure-forming elements and functional sites, the design and characterization of fluorinated proteins, top-down symmetric deconstruction and the design of protein libraries and novel or repurposed enzymes. Written in the highly successful Methods in Molecular Biologyseries format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and intuitive, Protein Design: Method and Applications, Second Edition provides a number of practical protocols and instructive reviews to aid in the creation of new experiments.
This book discusses the use of microorganisms for improving nutrient quality and producing healthier foods. Conventional roles of microbes in food preservation and in producing more readily digestible nutrients via natural fermentation processes are also examined. Individual chapters explore topics such as bio-preservation, incorporation of lactic acid bacteria, traditional fermented Mongolian foods, fermented fish products of Sudan, probiotics in China, fermented soymilk, food colorants, and the effect of food on gut microbiota. Readers will gain insights into current trends and future prospects of functional foods and nutraceuticals. This volume will be of particular interest to scientists working in the fields of food sciences, microbiology, agriculture and public health.
Featuring experimental approaches that shed light on the complexity of Ras GTPase biological functions, Ras Signaling: Methods and Protocols contains general overviews and detailed applications of both well-established and recently developed research techniques, including biochemical, biophysical, molecular biology, genetic and behavioral approaches, advanced high resolution fluorescence and electron microscopy imaging and "omics" technologies. Through this, the detailed volume provides information on expression, post-translational modifications, subcellular localization and dynamics, regulatory mechanisms of upstream and downstream signaling pathways and ultimately, biological activities and functions of Ras GTPases in different model systems, including high and low eukaryotic organisms. Written in the highly successful Methods in Molecular Biology series format, chapters include brief introductions, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Wide-ranging and authoritative, Ras Signaling: Methods and Protocols serves as an aid for investigators of different backgrounds and interests related to the multiple physiological and pathological functions of the large superfamily of Ras GTPases.
A Mathematical Approach to Special Relativity introduces the mathematical formalisms of special and general relativity. Developed from the author's experience teaching physics to students across all levels, the valuable resource introduces key concepts, building in complexity and using increasingly advanced mathematical tools as it progresses. Without assuming a background in calculus, the text begins with symmetry, before delving more deeply into Galilean relativity. Throughout, the book provides examples and useful "Guides to the Literature." This unique text emphasizes the experimental consequences and verifications of the underpinning theory in order to provide students with a solid foundation in this key area.
A number of techniques to study ion channels have been developed since the electrical basis of excitability was first discovered. Ion channel biophysicists have at their disposal a rich and ever-growing array of instruments and reagents to explore the biophysical and structural basis of sodium channel behavior. Armed with these tools, researchers have made increasingly dramatic discoveries about sodium channels, culminating most recently in crystal structures of voltage-gated sodium channels from bacteria. These structures, along with those from other channels, give unprecedented insight into the structural basis of sodium channel function. This volume of the Handbook of Experimental Pharmacology will explore sodium channels from the perspectives of their biophysical behavior, their structure, the drugs and toxins with which they are known to interact, acquired and inherited diseases that affect sodium channels and the techniques with which their biophysical and structural properties are studied.
This special volume of "Progress in Molecular Biology and
Translational Science "focuses on the molecular biology of
arrestins, with contributions from leaders in the field. Arrestins
have emerged as central players in the regulation of many facets of
G protein-coupled receptor signaling. This volume covers a variety
of topics with reviews written by experts in the field. Key features: * Contributions from leading authorities * Informs and updates on all the latest developments in the field
"Advances in Botanical Research" publishes in-depth and up-to-date
reviews on a wide range of topics in plant sciences. Currently in
its 67th volume, the series features several reviews by recognized
experts on all aspects of plant genetics, biochemistry, cell
biology, molecular biology, physiology and ecology. This thematic
volume features reviews on metabolomics coming of age with its
technological diversity.
It is widely recognized that analytical technologies and techniques
are playing a pioneering role in a range of today's foremost
challenging scientific endeavours, including especially biological
and biomedical research. Worthy of mention, for example, are the
role that high performance separation techniques played in mapping
the human genome and the pioneering work done within mass
spectrometry.
This book presents an overview of the RNA networks controlling gene expression in fungi highlighting the remaining questions and future challenges in this area. It covers several aspects of the RNA-mediated mechanisms that regulate gene expression in model yeasts and filamentous fungi, organisms of great importance for industry, medicine and agriculture. It is estimated that there are more than one million fungal species on the Earth. Despite their diversity (saprophytic, parasitic and mutualistic), fungi share common features distinctive from plants and animals and have been grouped taxonomically as an independent eukaryotic kingdom. In this book, 15 chapters written by experts in their fields cover the RNA-dependent processes that take place in a fungal cell ranging from formation of coding and non-coding RNAs to mRNA translation, ribosomal RNA biogenesis, gene silencing, RNA editing and epigenetic regulation. |
You may like...
Handbook of Hormones - Comparative…
Hironori Ando, Kazuyoshi Ukena, …
Paperback
R5,129
Discovery Miles 51 290
|