![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Biochemistry
CRISPR in Animals and Animal Models, Volume 152, the latest release in the Progress in Molecular Biology and Translational Science series, explores the genome editing CRISPR system in cells and animal models, its applications, the uses of the CRISPR system, and the past, present and future of CRISPR genome editing. Topics of interest in this updated volume include a section on CRISPR history, The genome editing revolution, Programming CRISPR and its applications, CRISPR Delivery methods, CRISPR libraries and screening, CRISPR investigation in haploid cells, CRISPR in the generation of transgenic animals, CRISPR therapeutics, and Promising strategies and present challenges.
Methods in Enzymology, Volume 599 is the second of two volumes focused on Fe-S cluster enzymes. Topics of interest in this new release include steps towards understanding mitochondrial Fe/S cluster biogenesis, iron sulfur clusters in zinc finger proteins, electrochemistry of Iron-sulfur enzymes, NRVS for Fe in biology and its experiment and basic interpretation, methods for studying iron regulatory protein 1, an important protein in human iron metabolism, the characterization of glutaredoxin Fe-S cluster binding interactions using circular dichroism spectroscopy, fluorescent reporters to track Fe-S cluster assembly and transfer reactions, methods for studying the Fe-S cluster containing base excision repair glycosylase MUTYH, and more.
Peptidomics of Cancer-Derived Enzyme Products, Volume 42, the latest in The Enzymes series, is ideal for researchers in biochemistry, molecular and cell biology, pharmacology, and cancer, with this volume featuring high-caliber, thematic articles on the topic of peptidomics of cancer-derived enzyme products. Specific chapters cover Circulating peptidome and tumor-resident proteolysis, Colon tumor secretopeptidome, Chemoenzymatic method for glycomics, Human plasma peptidome for pancreatic cancer, Lipoproteomics and quantitative proteomics, Salivaomics: Protein markers/extracellular RNA/DNA in saliva, and Enzyme-responsive vectors for cancer therapy.
The critically acclaimed laboratory standard for more than forty
years, Methods in Enzymology is one of the most highly respected
publications in the field of biochemistry. Since 1955, each volume
has been eagerly awaited, frequently consulted, and praised by
researchers and reviewers alike. More than 285 volumes have been
published (all of them still in print) and much of the material is
relevant even today-truly an essential publication for
researchersin all fields of life sciences.
This book reviews the advances and challenges of structure-based drug design in the preclinical drug discovery process, addressing various diseases, including malaria, tuberculosis and cancer. Written by internationally recognized researchers, this edited book discusses how the application of the various in-silico techniques, such as molecular docking, virtual screening, pharmacophore modeling, molecular dynamics simulations, and residue interaction networks offers insights into pharmacologically active novel molecular entities. It presents a clear concept of the molecular mechanism of different drug targets and explores methods to help understand drug resistance. In addition, it includes chapters dedicated to natural-product- derived medicines, combinatorial drug discovery, the CryoEM technique for structure-based drug design and big data in drug discovery. The book offers an invaluable resource for graduate and postgraduate students, as well as for researchers in academic and industrial laboratories working in the areas of chemoinformatics, medicinal and pharmaceutical chemistry and pharmacoinformatics.
This book focuses on the state-of-the-art of biosensor research and development for specialists and non-specialists. It introduces the fundamentals of the subject with relevant characteristics of transducer elements, as well as biochemical recognition molecules. This book is ideal for researchers of nanotechnology, materials science and biophysics.
This book focuses on emerging themes in the molecular mechanisms of
calcium signal transduction through calmodulin-regulated pathways.
It provides the reader with selected examples and experimental
precedents that underlie current models of cell regulation through
calmodulin-regulated pathways and their linkage with other
regulatory pathways.
G Protein Coupled Receptors, Second Edition, Volume 143, a new volume in the Methods in Cell Biology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. It contains a wide array of topics about the G protein coupled receptors, as well as updates of chapters from the first edition.
Mechanisms of DNA Recombination and Genome Rearrangements: Methods to Study Homologous Recombination, Volume 600, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Homologous genetic recombination remains the most enigmatic process in DNA metabolism. The molecular machines of recombination preserve the integrity of the genetic material in all organisms and generate genetic diversity in evolution. The same molecular machines that support genetic integrity by orchestrating accurate repair of the most deleterious DNA lesions, however, also promote survival of cancerous cells and emergence of radiation and chemotherapy resistance. This two-volume set offers a comprehensive set of cutting edge methods to study various aspects of homologous recombination and cellular processes that utilize the enzymatic machinery of recombination The chapters are written by the leading researches and cover a broad range of topics from the basic molecular mechanisms of recombinational proteins and enzymes to emerging cellular techniques and drug discovery efforts.
This publication offers a systemic analysis of sustainability in the food system, taking as its framework the Sustainable Development Goals of the 2030 Agenda of the United Nations. Targeted chapters from experts in the field cover main challenges in the food system and propose methods for achieving long term sustainability. Authors focus on how sustainability can be achieved along the whole food chain and in different contexts. Timely issues such as food security, climate change and migration and sustainable agriculture are discussed in depth. The volume is unique in its multidisciplinary and multi-stakeholder approach. Chapter authors come from a variety of backgrounds, and authors include academic professors, members of CSO and other international organizations, and policy makers. This plurality allows for a nuanced analysis of sustainability goals and practices from a variety of perspectives, making the book useful to a wide range of readers working in different areas related to sustainability and food production. The book is targeted towards the academic community and practitioners in the policy, international cooperation, nutrition, geography, and social sciences fields. Professors teaching in nutrition, food technology, food sociology, geography, global economics, food systems, agriculture and agronomy, and political science and international cooperation may find this to be a useful supplemental text in their courses.
Inorganic Biochemistry An Introduction Second Edition J.A. Cowan Developments in the expanding field of inorganic biochemistry have led to major additions to this important teaching text. Like the earlier edition, the second edition does not aim to be comprehensive, but to illustrate the use of basic principles to tackle important problems in inorganic biochemistry. New features of the second edition include a section on basic kinetic and thermodynamic principles in the first chapter; coverage of iron response proteins, ribozymes, and radiopharmaceuticals; a new case study of bleomycin; a comprehensive set of problems and study questions; complete literature citations; and review questions after most of the summary sections. Inorganic Biochemistry: An Introduction, Second Edition will be of great value to senior-level undergraduates and beginning graduate students in inorganic chemistry and biochemistry. It also will be a valuable reference for biological, inorganic and organic chemists; chemical and environmental engineers; researchers in molecular biology and medical sciences; and biophysicists.
This book provides a timely state-of-the-art overview of voltage-gated sodium channels, their structure-function, their pharmacology and related diseases. Among the topics discussed are the structural basis of Na+ channel function, methodological advances in the study of Na+ channels, their pathophysiology and drugs and toxins interactions with these channels and their associated channelopathies.
This volume covers an array of techniques available for studying peptide-protein docking and design. The book is divided into four sections: peptide binding site prediction; peptide-protein docking; prediction and design of peptide binding specificity; and the design of inhibitory peptides. The chapters in Modeling Peptide-Protein Interactions: Methods and Protocols cover topics such as the usage of ACCLUSTER and PeptiMap for peptide binding site prediction; AnchorDock and ATTRACT for blind, flexible docking of peptides to proteins; flexible peptide docking using HADDOCK and FlexPepDock; identifying loop-mediated protein-protein interactions using LoopFinder; and protein-peptide interaction design using PinaColada. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary details for successful application of the different approaches and step-by-step, readily reproducible protocols, as well as tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Modeling Peptide-Protein Interactions: Methods and Protocols provides a diverse and unified overview of this rapidly advancing field of major interest and applicability.
Future Directions in Biocatalysis, Second Edition, presents the future direction and latest research on how to utilize enzymes, i.e., natural catalysts, to make medicines and other necessities for humans. It emphasizes the most important and unique research on biocatalysis instead of simply detailing the ABC's on the topic. This book is an indispensable tool for new researchers in the field to help identify specific needs, start new projects that address current environmental concerns, and develop techniques based on green technology. It provides invaluable hints and clues for conducting new research on enzymes, with final sections outlining future directions in biocatalysis further expanding the science into new applications.
This book presents multiple new and classical methods for studying the vital poly-ADP-ribose (pADPr) pathway. Beginning with techniques for the detection and quantification of the product of poly(ADP-ribose) polymerase (PARP) enzymatic activity and detection of variation in pADPr production during the cell cycle, the volume continues with sections on the identification of pADPr protein acceptors, methods focusing on studying molecular mechanisms of PARP functions in eukaryotic cells, particularly those involved in control of DNA repair and oxidative stress, as well as in expression regulation, approaches to the in vitro reconstitution of PARP-1 interaction with chromatin, the development and testing of small molecule PARP inhibitors, and the functions of understudied members of PARP family. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Poly(ADP-Ribose) Polymerase: Methods and Protocols, Second Edition serves as an ideal companion to the first edition for scientists whose investigations involve this important pathway. The chapter 'Identifying and Validating Tankyrase Binders and Substrates: A Candidate Approach' is published open access under a CC BY 4.0 license.
Medicinal chemistry is both science and art. The science of medicinal chemistry offers mankind one of its best hopes for improving the quality of life. The art of medicinal chemistry continues to challenge its practitioners with the need for both intuition and experience to discover new drugs. Hence sharing the experience of drug research is uniquely beneficial to the field of medicinal chemistry. Drug research requires interdisciplinary team-work at the interface between chemistry, biology and medicine. Therefore, the topic-related series Topics in Medicinal Chemistry covers all relevant aspects of drug research, e.g. pathobiochemistry of diseases, identification and validation of (emerging) drug targets, structural biology, drugability of targets, drug design approaches, chemogenomics, synthetic chemistry including combinatorial methods, bioorganic chemistry, natural compounds, high-throughput screening, pharmacological in vitro and in vivo investigations, drug-receptor interactions on the molecular level, structure-activity relationships, drug absorption, distribution, metabolism, elimination, toxicology and pharmacogenomics. In general, special volumes are edited by well known guest editors.
Chemical Glycobiology, Part B, Volume 598, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume is the second release on chemical glycobiology.
Nitric Oxide: Biology and Pathobiology, Third Edition, provides information on nitric oxide, a signaling molecule of key importance for the cardiovascular system that regulates blood pressure and blood flow to different organs. With recent links to the role of nitric oxide in the expression of healthy benefits of controlled diet and aerobic exercise, and the reactions of nitric oxide that can impact cell signaling, this book provides a comprehensive resource during a time when increased research attention is being paid across the fields of pharmacology, biochemistry, cell and molecular biology, chemistry, immunology, neurobiology, immunology, nutrition sciences, drug development and the clinical management of both acute and chronic diseases.
Overflow Metabolism: From Yeast to Marathon Runners provides an overview of overflow metabolism, reviewing the major phenomenological aspects as observed in different organisms, followed by a critical analysis of proposed theories to explain overflow metabolism. In our ideal view of metabolism, we think of catabolism and anabolism. In catabolism nutrients break down to carbon dioxide and water to generate biochemical energy. In anabolism nutrients break down to generate building blocks for cell biosynthesis. Yet, when cells are pushed to high metabolic rates they exhibit incomplete catabolism of nutrients, with a lower energy yield and excretion of metabolic byproducts. This phenomenon, characterized by the excretion of metabolic byproducts that could otherwise be used for catabolism or anabolism, is generally known as overflow metabolism. Overflow metabolism is a ubiquitous phenotype that has been conserved during evolution. Examples are the acetate switch in the bacterium E. coli, Crabtree effect in unicellular eukaryote yeasts, the lactate switch in sports medicine, and the Warburg effect in cancer. Several theories have been proposed to explain this seemingly wasteful phenotype. Yet, there is no consensus about what determines overflow metabolism and whether it offers any selective advantage.
Sweet Biochemistry: Remembering Structures, Cycles, and Pathways by Mnemonics makes biochemistry lively, interesting and memorable. by connecting objects, images and stories. Dr. Kumari has converted cycles and difficult pathways into very simple formula, very short stories and images which will help readers see familiar things in complicated cycles and better visualize biochemistry.
This informative publication brings together knowledge of various
aspects of cellular regulation. Current Topics in Cellular
Regulation reviews the progress being made in those specialized
areas of study that have undergone substantial development. It also
publishes provocative new theories and concepts and serves as a
forum for the discussion of general principles. Researchers in
cellular regulation as well as biochemists, molecular and cell
biologists, microbiologists, and biophysicists will find Current
Topics in Cellular Regulation a useful source of up-to-date
information.
DNA Repair Enzymes, Part A, Volume 591 is the latest volume in the Methods in Enzymology series and the first part of a thematic that focuses on DNA repair enzymes. Topics in this new release include chapters on the Optimization of Native and Formaldehyde iPOND Techniques for Use in Suspension Cells, the Proteomic Analyses of the Eukaryotic Replication Machinery, DNA Fiber Analysis: Mind the Gap!, Comet-FISH for Ultrasensitive Strand-Specific Detection of DNA Damage in Single Cells, Examining DNA Double-Strand Break Repair in a Cell Cycle-Dependent Manner, Base Excision Repair Variants in Cancer, and Fluorescence-Based Reporters for Detection of Mutagenesis in E. coli. |
You may like...
Streetcar Named Desire: York Notes…
Tennessee Williams
Paperback
(2)
The Brothers Karamazov - A Novel in Four…
Fyodor Dostoevsky
Paperback
|