![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Biochemistry
This volume looks the current advanced protocols used to study aspects of the B cell receptor (BCR). The chapters in this book cover topics such as the mutant of BCR repertoire to understand antibody evolution; interactions between B cells and viruses; mechanical force during BCR activation; B cell signaling using flow cytometry; confocal microscopy, total internal reflection microscopy and intravital two-photon microscopy; and the methods used to study critical cell components related with B cell activation. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and practical, B Cell Receptor Signaling: Methods and Protocols is a valuable resource for everyone in the scientific community currently working in the B cell field.
The papers assembled in this volume were originally presented at
the joint meeting of the Phytochemical Society of North America and
the Mid-Atlantic Plant Molecular Biology Society, in August 2000.
The symposium from which these chapters were prepared was entitled
""Regulation of Phytochemicals by Molecular Techniques"" and was
organised by James Saunders and Ben Matthews. This joint meeting
was timely because of recent landmark advances in molecular biology
and genomics as well as the renewed interest in phytochemistry as a
rich source of nutraceuticals, drugs, and alternatives to synthetic
agriculture pesticides. Progress in genome sequencing in plants
such as Arabidopsis and rice has been remarkable, as have expressed
sequence tag (EST) projects in other plants, including maize and
soybean. Recently, private and public sector participants of the
Human Genome Project announced that a rough draft of the human
genome has been constructed. These advances directly influence
phytochemical investigations by providing both insight and tools
for exploring and manipulating genomes.
Recent advances in protein structural biology, coupled with new
developments in human genetics, have opened the door to
understanding the molecular basis of many metabolic, physiological,
and developmental processes in human biology. Medical pathologies,
and their chemical therapies, are increasingly being described at
the molecular level. For single-gene diseases, and some multi-gene
conditions, identification of highly correlated genes immediately
leads to identification of covalent structures of the actual
chemical agents of the disease, namely the protein gene products.
Once the primary sequence of a protein is ascertained, structural
biologists work to determine its three-dimensional, biologically
active structure, or to predict its probable fold and/or function
by comparison to the data base of known protein structures.
Similarly, three-dimensional structures of proteins produced by
microbiological pathogens are the subject of intense study, for
example, the proteins necessary for maturation of the human HIV
virus. Once the three-dimensional structure of a protein is known
or predicted, its function, as well as potential binding sites for
drugs that inhibit its function, become tractable questions. The
medical ramifications of the burgeoning results of protein
structural biology, from gene replacement therapy to "rational"
drug design, are well recognized by researchers in biomedical
areas, and by a significant proportion of the general population.
The purpose of this book is to introduce biomedical scientists to
important areas of protein structural biology, and to provide an
insightful orientation to the primary literature that shapes the
field in each subject.
This volume introduces bioinformatics research methods for proteins, with special focus on protein post-translational modifications (PTMs) and networks. This book is organized into four parts and covers the basic framework and major resources for analysis of protein sequence, structure, and function; approaches and resources for analysis of protein PTMs, protein-protein interactions (PPIs) and protein networks, including tools for PPI prediction and approaches for the construction of PPI and PTM networks; and bioinformatics approaches in proteomics, including computational methods for mass spectrometry-based proteomics and integrative analysis for alternative splice isoforms, for functional discovery. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory or computational protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Protein Bioinformatics: From Protein Modifications and Networks to Proteomics is a valuable resource for readers who wish to learn about state-of-the-art bioinformatics databases and tools, novel computational methods, and future trends in protein and proteomic data analysis in systems biology. This book is useful to researchers who work in the biotechnology and pharmaceutical industries, and in various academic departments, such as biological and medical sciences and computer sciences and engineering.
This volume provides protocol references covering recent developments in the aptamer field. Within the last decade, aptamers have become more and more popular, and their sophisticated biophysical properties together with their ability to be easily modified and, thus, adapted to various regimens makes them a very promising class of compounds. Divided into three sections, the book covers selection, a series of analytical methods to assess biophysical properties of aptamer-target interactions, as well as various applications of aptamers. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and easy to follow, Nucleic Acid Aptamers: Selection, Characterization, and Application provides a state-of-the-art summary of recent developments in the aptamer field and will be a helpful resource for scientists in the life sciences working with aptamers as tools to elucidate biological systems.
Hsp90 in Cancer: Beyond the Usual Suspects, the latest volume in the Advances in Cancer Research series, focuses on the multifunctional molecular chaperone Hsp90 which regulates the post-translational stability and function of a broad repertoire of client proteins and discusses some of the lesser-known aspects of how Hsp90 and its related family members enable oncogenic transformation and malignant progression.
This book presents various examples of how advanced fluorescence and spectroscopic analytical methods can be used in combination with computer data processing to address different biochemical questions. The main focus is on evolutionary biochemistry and the description of biochemical and metabolic issues; specifically, the use of pulse amplitude modulated fluorescence (PAM) for the functional analysis of the cellular state, as well as results obtained by means of the derivative spectroscopy method characterizing structural reorganization of a cell under the influence of external factors, are discussed. The topics presented here will be of interest to biologists, geneticists, biophysicists and biochemists, as well as experts in analytical chemistry, pharmaceutical chemistry and radio chemistry and radio activation studies with protonen and alpha-particles. It also offers a valuable resource for advanced undergraduate and graduate students in biological, physical and chemical disciplines whose work involves derivative spectrophotometry and PAM-fluorescence.
This volume provides an essential update on fundamental issues, current and new applications, as well as practical protocols to explore the extensive applications of lipases and the potential application of phospholipases. After an overview, the book delves into activity screening and expression, optimization of the biocatalyst production and performances, and applications of lipases, phospholipases, and esterases. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Lipases and Phospholipases: Methods and Protocols, Second Editionserves as an updated reference book for the large scientific community, both seasoned and novice, working with lipases, phospholipases, and related enzymes.
This volume covers some of the most widely used protocols on nanocanonical amino acids, providing details and advice for users to get each method up and running for their chosen application. Chapters have been divided into three parts describing methods for protein production in the test tube, in prokaryotes, and in eukaryotes. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Noncanonical Amino Acids: Methods and Protocols aims to provide readers with techniques that enable them to design new experiments and create new areas of research.
This volume offers a careful selection of trend-setting topics in the field. In-depth review articles illustrate current trends in the field. Experienced experts present a comprehensive overview concerning the electrochemical biosensing of glucose for diabetes care from an industrial research and development perspective a survey of bioassay applications for individually addressable electrochemical arrays, focusing on liquid-phase bioanalytical assays a review of recent advances in the development of electronic tongues based on the use of biosensor arrays coupled with advanced chemometric data analysis novel strategies of DNA biosensor development and corresponding applications for studies of DNA damage a survey of recent trends in the electrochemistry of redox proteins, including the increasing diversity of redox proteins used in electrochemical studies, novel immobilization strategies, and biosensor / biofuel cell applications an overview of electrochemical sensing of blood gases with advanced sensor concepts a survey of recent bioelectroanalytical studies with high spatial resolution using scanning electrochemical microscopy with a wide range of applications covering imaging of living cells, studies of metabolic activity, imaging of local enzyme activity, and studies of transport through biolayers This timely collection will be of interest not only for experts in the field, but also to students and their teachers in disciplines that include analytical chemistry, biology, electrochemistry, and various interdisciplinary research areas.
Leading researchers are specially invited to provide a complete understanding of the key topics in these archetypal multidisciplinary fields. In a form immediately useful to scientists, this periodical aims to filter, highlight and review the latest developments in these rapidly advancing fields.
This book will provide current understandings about two ubiquitously expressed metabotropic GPCRs, G-coupled purinoreceptor type 2 (P2Y) and Takeda G-protein-coupled bile acid receptor 5 (TGR5). G protein coupled receptors (GPCRs) are the largest family of proteins implicated in majority of cellular responses. The two receptor sub-families play a central role in many physiological functions as well as in many pathological conditions. This book offers up-to-date information on the physiological functions, signaling pathways and regulatory mechanisms of P2Y and TGR5 receptors. In addition, this book provides a comprehensive overview about the abnormalities of P2Y/TGR5 receptors and their contribution in the development and progression of pathological conditions. It also covers the currently available natural, chemical and pharmacological agents targeting these two receptor families and their therapeutic implications in P2Y and TGR5 associated disorders. This book is a valuable source for beginners and researchers to follow the rapidly progressing field of these two GPCR subfamily members.
Biochemistry for Medical Professionals contains pivotal advances in the biochemistry field and provides a resource for professionals across medicine, dentistry, pharmaceutical sciences and health professions who need a concise, topical biochemistry reference. Relevant, well-illustrated coverage begins with the composition of the human body and then goes into the technical detail of the metabolism of the human body and biochemistry of internal organs before featuring a biotechnology study inclusive of numerous methods and applications. The work is written at a consistently high level, with technical notes added to aid comprehension for complex topics.
Biocidal polymers are designed to inhibit or kill microorganisms such as bacteria, fungi and protozoans. This book summarizes recent findings in the synthesis, modification and characterization of various antimicrobial polymers ranging from plastics and elastomers to biomimetic and biodegradable polymers. Modifications with different antimicrobial agents as well as antimicrobial testing methods are described in a comprehensive manner.
This detailed volume explores the continuing techniques of studying RNA-protein complexes and interactions as research in these areas expand. After an introductory chapter, the book continues with ways to purify RNA-protein complexes assembled in cells or in isolated cellular extracts, methods for measuring various biochemical activities of RNA-interacting proteins or ribonucleoproteins, biochemical methods for measuring direct RNA-protein contact, as well as various new or innovative methods pertinent to the subject. Written for the highly successful Methods in Molecular Biology series, chapters contain brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, RNA-Protein Complexes and Interactions: Methods and Protocols provides a set of useful protocols, both basic and advanced, designed to inspire researchers working with RNA and RNA-interacting proteins.
This book introduces characteristic features of the protein structure prediction (PSP) problem. It focuses on systematic selection and improvement of the most appropriate metaheuristic algorithm to solve the problem based on a fitness landscape analysis, rather than on the nature of the problem, which was the focus of methodologies in the past. Protein structure prediction is concerned with the question of how to determine the three-dimensional structure of a protein from its primary sequence. Recently a number of successful metaheuristic algorithms have been developed to determine the native structure, which plays an important role in medicine, drug design, and disease prediction. This interdisciplinary book consolidates the concepts most relevant to protein structure prediction (PSP) through global non-convex optimization. It is intended for graduate students from fields such as computer science, engineering, bioinformatics and as a reference for researchers and practitioners.
A reference on cellular signaling processes, the third edition of Signal Transduction continues in the tradition of previous editions, in providing a historical overview of how the concept of stimulus-response coupling arose in the early twentieth century and shaped our current understanding of the action of hormones, cytokines, neurotransmitters, growth factors and adhesion molecules. In a new chapter, an introduction to signal transduction, the book provides a concise overview of receptor mechanisms, from receptor - ligand interactions to post-translational modifications operational in the process of bringing about cellular changes. The phosphorylation process, from bacteria to men, is discussed in detail. Signal transduction third edition further elaborates on diverse signaling cascades within particular contexts such as muscle contraction, innate and adaptive immunity, glucose metabolism, regulation of appetite, oncogenic transformation and cell fate decision during development or in stem cell niches. The subjects have been enriched with descriptions of the relevant anatomical, histological, physiological or pathological condition.
This book is a passionate account of the scientific breakthroughs that led to the solution of the first protein structures and to the understanding of their function at atomic resolution. The book is divided into self-standing chapters that each deal with a protein or protein family. The subject is presented in a fluid, non-technical style that will engage student and scientists in biochemistry, biophysics, molecular and structure biology and physiology.
This up-to-date volume includes protocols that illustrate the broad use of chromatin immunoprecipitation (ChIP) and ChIP-related methods in a variety of biological research areas. The collection also includes protocols designed to improve the performance of ChIP for specific applications. Written in the highly successful Methods in Molecular Biology series format, chapters include introduction to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, as well as tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Chromatin Immunoprecipitation: Methods and Protocols features techniques, including bioinformatic analysis of ChIP data, will be of interest to a very broad research community in the fields of biochemistry, molecular biology, microbiology, and biomedicine.
Ions, their transport across membranes, and their flow through specialized ion channels are central to the understanding of brain function, normal and pathological. The first part of this book deals with the regulation of ions in brain extra- and intracellular fluids. Regulation is effected by the blood-brain barrier, and by membrane ion pumps and other transport mechanisms of neurons and glial cells. Normally adjusted for optimal neural function, ion levels can change and alter the excitability of neurons and influence synaptic transmission in healthy and diseased brains. After an introduction to the electrophysiology of epilepsy, and a description of experimental seizure "models," the second part discusses the roles of the faulty regulation of ions and of the diseases of ion channels in generating epileptic seizures. The mechanisms of action of various anticonvulsant drugs are also considered. The third part is devoted to the phenomenon of spreading depression and its likely role in human diseases. The final chapters of the book deal with the role of ions in the devastation caused by lack of oxygen and by insufficient blood flow to brain tissue, and the reasons for the exceptional vulnerability of certain classes of central neurons in hypoxia and stroke. The book will be of interest to neuroscientists, neurobiologists, neurophysiologists, neurologists, neurosurgeons, and to their students and trainees.
This is the second volume in a series on membrane protein transfer. Membrane protein transport underlies the topological disposition of many proteins within cells and it is this disposition that allows for the co-ordination of the central cellular processes, such as metabolism.
Focuses on the aggregation of recombinant proteins in bacterial cells in the form of inclusion bodies and on their use in biotechnological and medical applications The first book devoted specifically to the topic of aggregation in bacteria, Protein Aggregation in Bacteria: Functional and Structural Properties of Inclusion Bodies in Bacterial Cells provides a large overview of protein folding and aggregation, including cell biology and methodological aspects. It summarizes, for the first time in one book, ideas and technical approaches that pave the way for a direct use of inclusion bodies in biotechnological and medical applications. Protein Aggregation in Bacteria covers: * Molecular and cellular mechanisms of protein folding, aggregation, and disaggregation in bacteria * Physiological importance and consequences of aggregation for the bacterial cell * Factors inherent to the protein sequence responsible for aggregation and evolutionary mechanisms to keep proteins soluble * Structural properties of proteins expressed as soluble aggregates and as inclusion bodies within bacterial cells both from a methodological point of view and with regard to their similarity with amyloids * Control of the structural and functional properties of aggregated proteins and use thereof in biotechnology and medicine Protein Aggregation in Bacteria is ideal for researchers in protein science, biochemistry, bioengineering, biophysics, microbiology, medicine, and biotechnology, particularly if they are related with the production of recombinant proteins and pharmaceutical science.
Multidisciplinary resource for graduate studies and the biotechnology industry Knowledge of the genetic basis of biological functioning continues to grow at an astronomical rate, as do the challenges and opportunities of applying this information to the production of therapeutic compounds, specialty biochemicals, functional food ingredients, environmentally friendly biocatalysts, and new bioproducts from renewable resources. While genetic engineering of living organisms transforms the science of genomics into treatments for cancer, diabetes, and heart disease, or products for industry and agriculture, the science and technology of bioseparations are the keys to delivering these products in a purified form suitable for use by people. The methods, theory, and materials that reduce the science of bioseparations to practice, whether in the laboratory or the plant, are the subjects of Bioseparations Engineering. Examples address purification of biomolecules ranging from recombinant proteins to gene therapy products, with footnotes detailing economics of the products. Mechanistic analysis and engineering design methods are given for:
Topics addressed within this framework are: stationary phase selection; separations development; modeling of ion exchange, size exclusion, reversed phase, hydrophobic interaction, and affinity chromatography; the impact of regulatory issues on chromatography process design; organization of separation strategies into logical sequences of purification steps; and bridges between molecular biology, combinatorial methods, and separations science. A result of teaching and developing the subject matter over ten years, Bioseparations Engineering is an ideal text for graduate students, as well as a timely desk book for process engineers, process scientists, researchers, and research associates in the pharmaceutical, food, and life sciences industries. |
You may like...
Centering the Margin - Agency and…
Alexander Horstmann, Reed L. Wadley
Paperback
R838
Discovery Miles 8 380
China's Place in Global Geopolitics…
Kjeld Erik Broedsgaard, Bertel Heurlin
Hardcover
R4,496
Discovery Miles 44 960
Agricultural Policy Reform and the WTO…
Giovanni Anania, Mary E. Bohman, …
Hardcover
R4,839
Discovery Miles 48 390
|