![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Biochemistry
This volume aims to provide an update on recent developments in protein secretion studies in plants versus yeast and mammalian systems. This book also discusses case studies that analyze the use of plant protein secretion using various tools and systems. The chapters in this book explore topics such as the study of Golgi-mediated protein traffic in plant cells; actin-based intracellular trafficking in pollen tubes; secretion system for identification of cargo proteins of vacuolar sorting receptors; isolation of the plant exocyst complex; and plant autophagy. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and authoritative, Plant Protein Secretion: Methods and Protocols is a valuable resource for researchers interested in furthering their studies in plant protein secretion."
This new volume of "Methods in Enzymology" continues the legacy
of this premier serial by containing quality chapters authored by
leaders in the field. This volume covers methods in protein design
and it has chapters on such topics as protein switch engineering by
domain insertion, evolution based design of proteins, and
computationally designed proteins.
Providing current diverse approaches and techniques used to study the immunoproteome, Immunoproteomics: Methods and Protocols collects chapters from key researchers that deliver information to be used in diagnostics, disease progression, and vaccine correlates of protection analysis, to name but a few. This detailed volume includes techniques used for the study of the antibody targets of bacterial pathogens, viruses, and cancer, mass spectrometry-based approaches to characterize T-cell epitopes, chapters on detection and relative quantification of cytokines in serum, as well as in silico prediction of epitopes using sequence-based or modeling approaches. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and thorough, Immunoproteomics: Methods and Protocols aids researchers in transferring these techniques to their own laboratories in addition to providing a reference to guide researchers toward appropriate techniques.
Since its inception in 1945, this serial has provided critical
and integrating articles written by research specialists that
integrate industrial, analytical, and technological aspects of
biochemistry, organic chemistry, and instrumentation methodology in
the study of carbohydrates. The articles provide a definitive
interpretation of the current status and future trends in
carbohydrate chemistry and biochemistry.
This book provides new structural, biochemical, and clinical information on ABC transporters. The authors explore and describe the state of the art of research, knowledge, and prospects for the future for this important family of proteins. The first ABC transporter was discovered in 1973 and was named P-glycoprotein. It elicits resistance to cytotoxic drugs, chiefly in human tumours, within which chemotherapy failure is observed in about 50% of cases. Together with its complex pharmacology, and even a suspected role in Alzheimer's disease, this ABC transporter still eludes a clinical solution to its multidrug resistance property. ABC transporters are integral membrane active proteins and they belong to one of the largest protein families across all species. Their myriad roles encompass the import or export of a diverse range of allocrites, including ion, nutrients, peptides, polysaccharides, lipids, and xenobiotics. They are of major medical importance with many members elaborating multidrug resistance in bacteria, fungi, yeast, parasites, and humans. Other ABC transporters are involved in a number of inherited diseases, including cystic fibrosis, macular degeneration, gout, and several other metabolic disorders
A number of techniques to study ion channels have been developed since the electrical basis of excitability was first discovered. Ion channel biophysicists have at their disposal a rich and ever-growing array of instruments and reagents to explore the biophysical and structural basis of sodium channel behavior. Armed with these tools, researchers have made increasingly dramatic discoveries about sodium channels, culminating most recently in crystal structures of voltage-gated sodium channels from bacteria. These structures, along with those from other channels, give unprecedented insight into the structural basis of sodium channel function. This volume of the Handbook of Experimental Pharmacology will explore sodium channels from the perspectives of their biophysical behavior, their structure, the drugs and toxins with which they are known to interact, acquired and inherited diseases that affect sodium channels and the techniques with which their biophysical and structural properties are studied.
This new volume of "Methods in Enzymology" continues the legacy of
this premier serial by containing quality chapters authored by
leaders in the field. Thethird of3 volumes covering Natural product
biosynthesis by microorganisms and plants.
Cell biology spans among the widest diversity of methods in the biological sciences. From physical chemistry to microscopy, cells have given up with secrets only when the questions are asked in the right way This new volume of "Methods in Cell Biology" covers laboratory methods in cell biology, and includes methods that are among the most important and elucidating in the discipline, such as transfection, cell enrichment and magnetic batch separation. Covers the most important laboratory methods in cell biology
Chapters written by experts in their fields
This book describes the state of the art in the field of bioanalytical nano- and microsystems with optical functionality. In 12 chapters distinguished scientists and leaders in their respective fields show how various optical technologies have been miniaturized and integrated over the last few decades in order to be combined with nano- and microsystems for applications in the life sciences. The main detection and characterization technologies are introduced, and examples of the superiority of these integrated approaches compared to traditional ones are provided. Examples from e.g. the fields of optical waveguides, integrated interferometers, surface plasmon resonance or Raman spectroscopy are introduced and discussed, and it is shown how these approaches have led to novel functionalities and thereby novel applications.
This book offers comprehensive information on the polymorphisms of genes encoding pattern recognition receptors (PRRs). Following a short description of the general role of PRRs in the immune system, the structure and function of Toll-like and NOD-like receptors are examined in detail. The main focus is on the role of inherited variation in PRRs and their correlation to cancer and cardiovascular diseases. A review of all epidemiological investigations is included, and a concept of genomic risk markers for the prevention of various diseases is also discussed.
Based on presentations made during the 6th International Symposium
on Natural Product Chemistry, this book is divided into two broad
sections. Section A includes articles on synthetic routes developed
to complex natural products, while Section B is a compilation of
discoveries of new natural products and their pharmacological
properties.
The concept of immunotherapy was in infancy when the first edition was written; since then, major advances have been made, not only with several prominent clinical trials, but also with the approval of cell-based therapy by the FDA for the treatment of cancer in 2010. These events resulted in a gradually narrowing gap between early scientific knowledge and the late development of immune-based therapies. Consequently, the significance and magnitude of these advances warranted a revision of this contribution; this revised edition will provide a deeper understanding of the recent advances and discoveries related to the function of the immune response and their applications in the development of novel therapies to treat human diseases. Some of the key discoveries during the past five years include: the identification of the new subsets of helper T cells; new cytokines and their networks; and novel signal transduction mechanisms. For example, the identification of TH17 subset of helper T cells, in addition to TH1 and TH2 cells, not only advanced our understanding of the function of the basic immune response, but also raised our awareness of the possible etiology and pathogenesis of diseases such as allergy, asthma, rheumatoid arthritis, and other auto-immune/immune system based diseases. The newly identified powerful cytokine networks, that regulate both innate and acquired immune responses, emerged as a result of the finding of new cell types such as innate lymphoid cells and iNKT. Identification of the novel cytokines and their networks has advanced our knowledge of the mechanisms involved in the maintenance of tissue homeostasis, including inflammation and tissue repair during stress and injury. The development of HIV vaccines has also seen dramatic changes over the last few years. There has been a shift from a sole focus on T cell vaccines to a holistic approach that pertains to the induction of both humoral and cellular elements. This entails the induction of antibodies - both binding and neutralizing - to prevent infection. The cellular vaccination produces a safety net of CD8+ T-cell responses to suppress the replication of the virus in the infected patients, and both of the effector arms are aided by helper T cells. From the perspective of clinical applications, significant advances have also been made in: oral immunotherapy for allergic disease, the possible treatment of HIV infection, the development of new monoclonal antibodies and their fragments to treat human diseases, and immune cell based therapies for cancer.
Lipases are the most applied enzymes in organic synthesis due to their broad substrate acceptance and because of the availability of the molecular, biochemical, themodynamical and solvent engineering tools, which allows the optimization of lipases and lipase-catalyzed reactions. On the other hand, phospholipases are emerging as useful enzymes in food and pharmaceutical industries. In Lipases and Phospholipases: Methods and Protocols, expert researchers in the field provide key techniques to investigate these essential enzymes. Focusing on fundamental issues, current and new applications as well as practical step-by-step protocols, and the extensive applications of lipases and the potential application of phospholipases and its inhibitors. Written in the highly successful Methods in Molecular Biology (TM) series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, Lipases and Phospholipases: Methods and Protocols aids scientists in continuing to study lipases, phopholipases and related enzymes.
This book examines Au (I, III) complexes that selectively attack and inhibit zinc finger proteins (ZnFs) for potential therapeutic use. The author explores gold(I)-phosphine, gold(III) complexes with N^N and C^N donors as inhibitors of the HIV-1 nucleocapsid protein (NCp7), in comparison to the human transcription factor Sp1. To determine the coordination sphere of the gold adducts formed by interaction with ZnFs, two innovative approaches are used, based on Travelling-Wave Ion Mobility coupled with Mass Spectrometry (TWIM-MS), and X-ray Absorption Spectroscopy. Both approaches are proven to yield valuable structural information regarding the coordination sphere of gold in the adducts. In addition, the organometallic compound [Au (bnpy)Cl2] is evaluated. The system is shown to be capable of inhibiting ZnFs by means of C-S coupling.
First published in 1943, "Vitamins and Hormones" is the longest-running serial published by Academic Press. Under the capable and qualified editorial leadership of Dr.
Gerald Litwack, "Vitamins and Hormones" continues to publish
cutting-edge reviews of interest to endocrinologists, biochemists,
nutritionists, pharmacologists, cell biologists and molecular
biologists. Others interested in the structure and function of
biologically active molecules like hormones and vitamins will, as
always, turn to this series for comprehensive reviews by leading
contributors to this and related disciplines. Key features: * Contributions from leading authorities * Informs and updates on all the latest developments in the field
Lectins are an important group of proteins, which bind to carbohydrates and can agglutinate cells or precipitate polysaccharides and glycoproteins. These agglutinating and precipitating properties are very similar to those of antibodies, and hence many of the methods used in lectin research are based on immunochemical techniques. Lectins are however not of immune origin, and are found in almost all organisms, including plants and micro-organisms. Current interest in lectins derives particularly from their usefulness in detecting and studying carbohydrates in solution and on cell surfaces. Studies of lectin-carbohydrate interactions are providing information on the precise molecular details of the interactions between proteins and carbohydrates in general. Lectins also serve as valuable tools in biological and medical research, in areas as diverse as separation and characterization of glycoproteins and glycopeptides, typing of bacteria and fractionation of lymphocytes and of bone marrow cells. Their biological role is uncertain but is generally believed to be primarily as recognition determinants in mirco-organisms, plants and animals. The purpose of the book is to give an accessible overview of the properties of lectins, their possible roles and their applications in biology and biomedical research in biochemistry and cell biology. This book should be of interest to biochemists, biologists, microbiologists, pathologists, histologists, cancer researchers, immunologists and haematologists.
This book presents the latest breakthrough results in glycobiology regarding the roles of glycans in relation to quality control and transport of protein, the immune system, viral infection, stem cells, the neural system, and various diseases such as cancer, diabetes, chronic obstructive pulmonary disease, muscular dystrophy, and schizophrenia. Although glycoscience has long been regarded as a very specialized field with no simple analytical method, the recent explosive progress in research continues to provide limitless evidence that glycan chains are the key component in various biological phenomena. Cell surface glycans, for example, change with developmental stages or environmental conditions and thus represent a "face" of the cell that is utilized for identification of iPS and ES cells and as biomarkers in diagnosis or detection of cancer. This book comprises 17 chapters, each of which poses outstanding "glyco-related" questions enabling non-specialists to have a clearer idea about what the future direction for further investigation of glycans in their own research fields will be. Also including basic information to understand the nature of glycans, this title serves as an excellent "textbook" for researchers in diverse research fields who are not familiar with, but nevertheless interested in, glycan chains or sugar chains.
For many years, it has been known that when rats and mice are given a reduced amount of food, their life span is increased and they remain healthy and vigorous at advanced ages. What is the reason for this change in the usual pattern of
aging? The evidence is overwhelming that the life extension results
from a slowing of aging processes. And the factor responsible is
the decrease in caloric intake. The obvious question: How does this
factor work? A good question - and the reason that research on the
anti-aging action of caloric restriction is today one of the most
studied research areas in biological gerontology. For it is felt
that if the biological mechanisms of the anti-aging action of
caloric restriction can be uncovered, we would gain an
understanding of the basic nature of aging processes, which would,
in turn, yield possible interventions in human aging. This book
aims to provide the growing number of researchers in this field
(faculty, postdoctoral trainees, and graduate students) with a
detailed knowledge of what is known about caloric restriction
within the frame of gerontology, as well as insights on future of
this field.
This thesis describes a series of investigations designed to assess the value of metalloenzymes in systems for artificial and adapted photosynthesis. The research presented explores the interplay between inherent enzyme properties such as structure, rates and thermodynamics, and the properties of the semiconducting materials to which the enzyme is attached. Author, Andreas Bachmeier provides a comprehensive introduction to the interdisciplinary field of artificial photosynthesis, allowing the reader to grasp the latest approaches being investigated, from molecular systems to heterogeneous surface catalysis. Bachmeier's work also uses metalloenzymes to highlight the importance of reversible catalysts in removing the burden of poor electrocatalytic rates and efficiencies which are common characteristics for most artificial photosynthesis systems. Overall, this thesis provides newcomers and students in the field with evidence that metalloenzymes can be used to establish new directions in artificial photosynthesis research.
The work described in this book is an excellent example of interdisciplinary research in systems biology. It shows how concepts and approaches from the field of physics can be efficiently used to answer biological questions and reports on a novel methodology involving creative computer-based analyses of high-throughput biological data. Many of the findings described in the book, which are the result of collaborations between the author (a theoretical scientist) and experimental biologists and between different laboratories, have been published in high-quality peer-reviewed journals such as Molecular Cell and Nature. However, while those publications address different aspects of post-transcriptional gene regulation, this book provides readers with a complete, coherent and logical view of the research project as a whole. The introduction presents post-transcriptional gene regulation from a distinct angle, highlighting aspects of information theory and evolution and laying the groundwork for the questions addressed in the subsequent chapters, which concern the regulation of the transcriptome as the primary functional carrier of active genetic information.
This volume presents an overview of nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) structure and function. It then continues with methods for the analysis of these pathways including conventional enzymological assays, contemporary mass spectrometric analysis techniques, specialized molecular biological approaches applicable to NRPSs and PKSs, and small molecule analysis tools tailored to this very special class of natural products, and concludes by examining bioinformatics tools for the analysis of these enzymes, pathways, and molecules. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Nonribosomal Peptide and Polyketide Biosynthesis: Methods and Protocols serves as a valuable reference for those experienced in studying NRPS and PKS enzymes, pathways, and natural products as well as a gateway for those just entering the field. |
You may like...
STEM Research for Students Volume 2…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,726
Discovery Miles 27 260
Table Mountain & Cape Peninsula - Road…
Mapstudio Mapstudio
Sheet map, folded
The Foundations of Physical Organic…
E. Thomas Strom, Vera V. Mainz
Hardcover
R5,475
Discovery Miles 54 750
|