![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Biochemistry
At the intersection of metabolite analysis, metabolic fingerprinting, and metabolomics, the study of metabolic profiling has evolved steadily over the course of time as have the methods and technologies involved in its study. In Metabolic Profiling: Methods and Protocols, expert researchers in the field present protocols that are illustrative of the evolution of metabolic profiling from single molecule analysis to global metabolome profiling. Comprised of the most essential techniques, this volume covers topics from inborn errors of metabolism and drug metabolite analysis to nuclear magnetic resonance metabolic profiles. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective subjects, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Metabolic Profiling: Methods and Protocols serves as a resource for both established and new investigators in this vital and ever-developing field.
The 2002 Nobel Prize in Physiology or Medicine was awarded to
Sydney Brenner (United Kingdom), H. Robert Horvitz (US) and John E.
Sulston (UK) "for their discoveries concerning genetic regulation
of organ development and programmed cell death." Cell death is a
fundamental aspect of embryonic development, normal cellular
turnover and maintenance of homeostasis (maintaining a stable,
constant environment) on the one hand, and aging and disease on the
other. This volume addresses the significant advances with the
techniques that are being used to analyze cell death.
The lipid-rich and otherwise challenging nature of many key tissues complicates many aspects of current research, and applications of the unique nature of lipoproteins and their biological effects has engendered unique and vital methodologies. In Lipoproteins and Cardiovascular Disease: Methods and Protocols, experts in the field present a compendium of advanced and classical molecular biology methods targeted towards lipoprotein, atherosclerosis, and vascular biology research, bringing together in a single volume an updated set of protocols and strategies for methods now driving the most recent advances, along with classical methods that are still widely used. Among the many topics covered in this cutting-edge work, the book delves into crucial techniques such as quantitative real-time PCR, microarrays, RT-PCR laser capture microdissection, and tissue-specific gene overexpression, knockout, and knockdown methodologies, including AAV as a liver-directed gene delivery vehicle. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective subjects, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and valuable notes which highlight tips on troubleshooting and avoiding known pitfalls. Comprehensive and easy to use, Lipoproteins and Cardiovascular Disease: Methods and Protocols serves both novices and experts alike as a complete guide for any researcher with an interest in lipoproteins and their significant biological effects.
Plant taxonomy is an ancient discipline facing new challenges with the current availability of a vast array of molecular approaches which allow reliable genealogy-based classifications. Although the primary focus of plant taxonomy is on the delimitation of species, molecular approaches also provide a better understanding of evolutionary processes, a particularly important issue for some taxonomic complex groups."Molecular Plant Taxonomy: Methods and Protocols"describes laboratory protocols based on the use of nucleic acids and chromosomes for plant taxonomy, as well as guidelines for phylogenetic analysis of molecular data. Experts in the field also contribute review and application chapters that will encourage the reader to develop an integrative taxonomy approach, combining nucleic acid and cytogenetic data together with other crucial information (taxonomy, morphology, anatomy, ecology, reproductive biology, biogeography, paleobotany), which will help not only to best circumvent species delimitation but also to resolve the evolutionary processes in play.Written in the successful"Methods in Molecular Biology"series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, "Molecular Plant Taxonomy: Methods and Protocols"seeks to provide conceptual as well as technical guidelines to plant taxonomists and geneticists."
The account in this inaugural volume of the series covers the period 1900 to 1960, but also outlines the principal developments in earlier centuries from which biochemistry emerged. Findings are considered in the light of present knowledge, rather than in a rigid historical framework.
Ribonucleases are a ubiquitous and functionally diverse group of enzymes that have a common ability to cleave RNA. Either through scission of internal phosphodiesters, or removal of nucleotides from RNA 5' or 3' ends, ribonucleases perform essential roles in gene expression and regulation, genome replication and maintenance, host defense, stress response, and viral strategies of infection. Ribonucleases have also served as highly informative models to understand virtually every aspect of biomolecular structure and function. The fifteen chapters in this volume are written by recognized researchers in the field, and provide in-depth analyses of the major ribonuclease families. Particular focus is given to the relation of ribonuclease structure and mechanism to biological function, as well as ribonuclease dysfunction in certain disease states. Other topics include the evolutionary genetics and functional diversification of ribonucleases, engineered ribonucleases as anti-cancer agents, the mechanisms of action of artificial ribonucleases, and ribonucleases as models to understand protein folding and stability. This volume should serve as an essential reference for a broad range of researchers and educators with interests in RNA metabolism, enzymology, and gene regulation.
The discovery that nitrogen monoxide or nitric oxide (NO)is a biologically produced free radical has revolutionized our thinking about physiological and pathological processes. This discovery has ignited enormous interest in the scientific community. When generated at low levels, NO is a signaling molecule, but at high concentration, NO is a cytotoxic molecule. The physiological and pathological processes of NO production and metabolism and its targets, currently areas of intensive research, have important pharmacologic implications for health and disease.
DNA and RNA fractions have been isolated from the whole blood, serum, plasma, the surface of blood cells, urine, saliva and spinal fluid from both healthy individuals and clinical patients. Recent developments are presented concerning the isolation, quantification and analysis of these molecules and their use in the identification of specific nucleic acid fragments related to a variety of clinical disorders thereby permitting their early diagnosis and prognosis.
The goal of the characterization and discovery of G protein-coupled receptors, arguably the most important class of signaling molecules in humans and other vertebrates, has spawned numerous vital methodologies. In "Methods for the Discovery and Characterization of G Protein-Coupled Receptors," experts in the field present the very latest on the methods and technology used to characterize and discover novel mechanisms of GPCRs which, in many cases, can be used directly to design experiments for the reader s particular GPCR of interest and their specific avenue of investigation. Divided into four convenient sections, this detailed volume covers GPCRs in the genome, trafficking of GPCRs, GPCRs on the membrane, as well as the regulation of these key receptors. Chapters also feature an important section called Future Directions which gives the reader an insight into advances soon to be realized in each area. Written for the popular "Neuromethods" series, this book contains the kind of detailed description and implementation advice that is crucial for getting optimal results. Authoritative and cutting-edge, "Methods for the Discovery and Characterization of G Protein-Coupled Receptors" serves as an ideal guide for scientists determined to further our knowledge of crucially important set of receptors.
Introduction to Electron Microscopy for Biologists is ideal for the
scientist who may be considering electron microscopy as a tool to
extend molecular, biochemical, or light microscope observations to
the next level of structural information, only available by
electron microscopy. Each chapter briefly surveys the present state
of structural information in a particular area, be it an individual
but widely occurring molecule such as actin or collagen, together
with the methods for visualization, either as an extracted and
purified entity, or in situ within its biological context. Not only
is this book an introduction to electron microscopy in general, but
it is also useful for those within the field who wish to move to a
different area of expertise, for instance an approach based on
rapid freezing, rather than more conventional protocols. This
should be a first choice reference for any biologist wanting to
know 'what does it look like' across the full spectrum of cell and
molecular biology of life science.
Presenting a new way to examine water quality criteria, this volume provides concise, critical reviews of timely advances in the field of xenobiotics. The text explores the research findings and procedures of The University of California-Davis Methodology for Deriving Aquatic Life Pesticide Water Quality Criteria.
The Nobel Prize was awarded in Physiology or Medicine in 1998 to
Louis J. Ignarro, Robert F. Furchgott and Ferid Murad for
demonstrating the signaling properties of nitric oxide. Nitric
Oxide (NO) is one of the few gaseous signaling molecules and is a
key biological messenger that plays a role in many biological
processes. NO research has led to new treatments for treating heart
as well as lung diseases, shock and impotence. (Sildenafil,
popularly known by the trade name Viagra, enhances signaling
through nitric oxide pathways.) Scientists are currently testing
whether NO can be used to stop the growth of cancerous tumors,
since the gas can induce programmed cell death, apoptosis.
"Current Topics in Membranes" provides a systematic, comprehensive,
and rigorous approach to specific topics relevant to the study of
cellular membranes. Each volume is a guest edited compendium of
membrane biology.
This thesis describes an in-depth study of an indolizine-based fluorophore, from understanding of its structure-photophysical property relationship to its application as a useful biological reporter. Organic fluorophores have been extensively used in the field of molecular biology owing to their excellent photophysical property, suitable cell permeability, and synthetic flexibility. Understanding of the structure-photophysical property relationship of a given fluorophore often paves the road to the development of valuable molecular probes to visualize and transcribe biological networks. In this thesis, respective chapters deal with molecular design, organic synthesis, structure-property analysis, and quantum-mechanical interpretation of unexplored family of indolizine-based molecules. This systematic exploration has led to rational development of a new microalgae lipid droplet probe, colorful bioorthogonal fluorogenic probes, and a bright mitochondrial probe, working under live cell conditions. Harnessing the optical properties of a given fluorophore has been an important topic for a couple of decades, both in industry and in academia. This thesis provides useful insights for the improvement and development of unique small fluorescent materials, or optical materials.
The intent in initiating this volume was to bring together a series
of essays which would define our present understanding of the
endosome and lysosome and their interrelationship. The editors
deliberately encouraged the contributors to be speculative; to
strive to put order to the "real" world of incomplete and sometimes
conflicting data. Seeing science from the laboratory bench can
often be like viewing an impressionistic painting from up close; a
series of paint dabs with no apparent order. The contributors to
this volume were asked to step back and leave the reader with a
sense of the whole as well as the detail. To the extent that this
has happened, the credit should go to the individual authors.
The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 400 volumes (all of them still in print), the series contains much material still relevant today-truly an essential publication for researchers in all fields of life sciences. Methods in Enzymology is now available online at ScienceDirect -
full-text online of volumes 1 onwards. For more information about
the Elsevier Book Series on ScienceDirect Program, please
visit:
The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 400 volumes (all of them still in print), the series contains much material still relevant today truly an essential publication for researchers in all fields of life sciences. Methods in Enzymology is now available online at ScienceDirect
full-text online of volumes 1 onwards. For more information about
the Elsevier Book Series on ScienceDirect Program, please
visit:
From being to becoming important, myo-inositol and its derivatives including phosphoinositides and phosphoinositols involved in diversi?ed functions in wide varieties of cells overcoming its insigni?cant role had to wait more than a century. Myo-inositol, infact, is the oldest known inositol and it was isolated from muscle as early as 1850 and phytin (Inositol hexakis phosphate) from plants by Pfeffer in 1872. Since then, interest in inositols and their derivatives varied as the methodology of isolation and puri?cation of the stereoisomers of inositol and their derivatives advanced. Phosphoinositides were ?rst isolated from brain in 1949 by Folch and their structure was established in 1961 by Ballou and his coworkers. After the compilation of scattered publications on cyclitols by Posternak (1965), proceedings of the conference on cyclitols and phosphoinositides under the supervision of Hoffmann-Ostenhof, were p- lished in 1969. Similar proceedings of the second conference on the same s- ject edited by Wells and Eisenberg Jr was published in 1978. In that meeting at the concluding session Hawthorne remarked "persued deeply enough p- haps even myoinositol could be mirror to the whole universe." This is now infact the scenario on the research on inositol and their phosphoderivatives. Finally a comprehensive information covering the aspects of chemistry, b- chemistry and physiology of inositols and their phosphoderivatives in a book entitled Inositol Phosphates written by Cosgrove (1980) was available.
The book deals with polar effects in carbohydrates and how these effects control the stereochemistry of carbohydrate reactions. This is important for understanding the mechanisms of certain carbohydrate reactions, including enzymatic reactions such as glycosidases, a very important group of enzymes in living matter. It is also very useful for synthetic carbohydrate chemists who would like to synthesize stereoselectively certain classes of carbohydrates. This book will be a very important source of information for practicing synthetic carbohydrate chemists. The book will also be helpful for organic chemists, or for those studying glycobiology.
This book includes a collection of chapters illustrating the application of geochemical methods to investigate the interactions between geological materials and fluids with humans. Examples include the incorporation and human health effects of inhaling lithogenic materials, the reactivity of biological fluids with geological materials, and the impact on nascent biomineral formation. Biomineralization is investigated in terms of mineralogy, morphology, bone chemistry, and pathological significance with a focus on the health impacts of "foreign" geological/environmental trace element incorporation. One of the contribution is devoted to particulate matter, the presence of metals and metalloids in the environment, and the possibility of using human hair as a biomarker between environmental/geological exposure and human bioincorporation. Other chapters focus on the last advances on the analytical methods and instrumentational approaches to investigating the chemistry of biological fluids and tissues.
Mathematical and computational biology is playing an increasingly
important role in the biological sciences. This science brings
forward unique challenges, many of which are, at the moment, beyond
the theoretical techniques available. Developmental biology, due to
its complexity, has lagged somewhat behind its sister disciplines
(such as molecular biology and population biology) in making use of
quantitative modeling to further biological understanding. This
volume comprises work that is among the best developmental modeling
available and we feel it will do much to remedy this
situation.
Driven in part by the development of genomics, proteomics, and
bioinformatics as new disciplines, there has been a tremendous
resurgence of interest in physical methods to investigate
macromolecular structure and function in the context of living
cells. This volume in Methods in Cell Biology is devoted to
biophysical techniques "in vitro" and their applications to
cellular biology. The volume covers methods-oriented chapters on
fundamental as well as cutting-edge techniques in molecular and
cellular biophysics. This book is directed toward the broad
audience of cell biologists, biophysicists, pharmacologists, and
molecular biologists who employ classical and modern biophysical
technologies or wish to expand their expertise to include such
approaches. It will also interest the biomedical and biotechnology
communities for biophysical characterization of drug formulations
prior to FDA approval.
Medicinal chemistry is both science and art. The science of medicinal chemistry offers mankind one of its best hopes for improving the quality of life. The art of medicinal chemistry continues to challenge its practitioners with the need for both intuition and experience to discover new drugs. Hence sharing the experience of drug research is uniquely beneficial to the field of medicinal chemistry. Drug research requires interdisciplinary team-work at the interface between chemistry, biology and medicine. Therefore, the topic-related series Topics in Medicinal Chemistry covers all relevant aspects of drug research, e.g. pathobiochemistry of diseases, identification and validation of (emerging) drug targets, structural biology, drugability of targets, drug design approaches, chemogenomics, synthetic chemistry including combinatorial methods, bioorganic chemistry, natural compounds, high-throughput screening, pharmacological in vitro and in vivo investigations, drug-receptor interactions on the molecular level, structure-activity relationships, drug absorption, distribution, metabolism, elimination, toxicology and pharmacogenomics. In general, special volumes are edited by well known guest editors.
For over fifty years the Methods in Enzymology series has been the critically aclaimed laboratory standard and one of the most respected publications in the field of biochemistry. The highly relevant material makes it an essential publication for researchers in all fields of life and related sciences. This volume, the second of three on the topic of Translation Initiation includes articles written by leaders in the field. |
You may like...
The Chemical Dialogue Between Plants and…
Vivek Sharma, Richa Salwan, …
Paperback
R3,943
Discovery Miles 39 430
Cholesterol - From Chemistry and…
Anna N. Bukiya, Alex M. Dopico
Paperback
R3,645
Discovery Miles 36 450
|