![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Biochemistry
"How did life originate and why were left-handed molecules selected for its architecture?" This question of high public and interdisciplinary scientific interest is the central theme of this book. It is widely known that in processes triggering the origin of life on Earth, the equal occurrence, the parity between left-handed amino acids and their right-handed mirror images, was violated. The balance was inevitably tipped to the left as a result of which life's proteins today exclusively implement the left form of amino acids. Written in an engaging style, this book describes how the basic building blocks of life, the amino acids, formed. After a comprehensible introduction to stereochemistry, the author addresses the inherent property of amino acids in living organisms, namely the preference for left-handedness. What was the cause for the violation of parity of amino acids in the emergence of life on Earth? All the fascinating models proposed by physicists, chemists and biologist are vividly presented including the scientific conflicts. The author describes the attempt to verify any of those models with the chirality module of the ROSETTA mission, a probe built and launched with the mission to land on a comet and analyse whether there are chiral organic compounds that could have been brought to the Earth by cometary impacts. A truly interdisciplinary astrobiology book, "Amino Acids and the Asymmetry of Life" will fascinate students, researchers and all readers with backgrounds in natural sciences. With a foreword by Henri B. Kagan."
The nature and directionality of halogen bonding; the sigma hole, by Timothy Clark, Peter Politzer, Jane S. Murray Solid-state NMR study of halogen-bonded adducts, by David Bryce Infrared and Raman measurements of halogen bonding in cryogenic solutions, by Wouter Herrebout Halogen bonding in the gas phase, by Anthony C. Legon Halogen bonding in solution, Mate Erdelyi Unconventional motifs for halogen bonding, by Kari Rissanen Halogen bonding in supramolecular synthesis, Christer Aakeroey Halogen bond in synthetic organic chemistry, Stefan M. Huber Anion recognition in solution via halogen bonding, Mark S. Taylor Anion transport with halogen bonds, by Stefan Matile Halogen bonding in silico drug design, by Pavel Hobza, Kevin Riley Biological halogen bonds: An old dog with new tricks, by P. Shing Ho Principles and applications of halogen bonding in medicinal chemistry, by Frank M. Boeckler Halogen bond in molecular conductors and magnets, by Marc Foumigue Halogen bonding towards design of organic phosphors, by Wei Jun Jin Halogen bond in photoresponsive materials, by Pierangelo Metrangolo, Giuseppe Resnati, Arri Priimagi
In the past decade, there has been an explosion of progress in understanding the roles of carbohydrates in biological systems. This explosive progress was made with the efforts in determining the roles of carbohydrates in immunology, neurobiology and many other disciplines, examining each unique system and employing new technology. This volume represents the second of three in the Methods in Enzymology series, including Glycobiology (vol. 415) and Glycomics (vol. 416), dedicated to disseminating information on methods in determining the biological roles of carbohydrates. These books are designed to provide an introduction of new methods to a large variety of readers who would like to participate in and contribute to the advancement of glycobiology. The methods covered include structural analysis of carbohydrates, biological and chemical synthesis of carbohydrates, expression and determination of ligands for carbohydrate-binding proteins, gene expression profiling including micro array, and generation of gene knockout mice and their phenotype analyses.
Interplay between Metal Ions and Nucleic Acids provides in an authoritative and timely manner in 12 stimulating chapters, written by 24 internationally recognized experts from 8 nations, and supported by nearly 1500 references, about 20 tables, and 125 illustrations, many in color, a most up-to-date view on metal ion-nucleic acid interactions; the characterization of which is covered in solution and in the solid state. The volume concentrates on modern developments encompassing topics in the wide range from G-quadruplexes via DNAzymes, catalysis at the DNA scaffold, and metal-mediated base pairs to peptide nucleic acids (PNAs) being thus of relevance, e.g., for chemistry and nanotechnology but also for molecular biology and (genetic) diagnostics.
The NATO ARW "Molecular Self-Organization in Micro-, Nano-, and Macro- Dimensions: From Molecules to Water, to Nanoparticles, DNA and Proteins" to commemorate Professor Alexander S. Davydov was held in Kiev, Ukraine, on 8-12 June, 2008, at the Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine. Theobjective ofthisNATOARWistounveilandformulatetheprincipalfeatures that govern myriads of the molecular self-organization processes in micro-, nano-, and macro-dimensions from the following key representatives such as liquid - ter and aqueous solutions, and molecular liquids, nanodots, nanoparticles including gold, solitons, biomolecules such as DNA and proteins, biopolymers and bios- sors, catalysis, molecular modeling, molecular devices, and thin ?lms, and to offer another, more advanced directions in computational, experimental, and technolo- cal areas of nano- and bioscience towards engineering novel and powerful molecular self-organized assemblies with tailored properties. Nanoscience is indeed one of the most important research and development fr- tiers in modern science. Simplistically, nanoscience is the science of small particles of materials of a size of nanometre. Molecular nanoscience and nanotechnology have brought to us the unprecedented experimental control of the structure of matter with novel extraordinary properties that open new horizons and new opportunities, and new ways to make things, particularly in our everyday life, to heal our bodies, and to care of the environment. Unfortunately, they have also brought unwelcome advances in weaponry and opened yet more ways to foul up the world on an en- mous scale.
In the past decade, there has been an explosion of progress in understanding the roles of carbohydrates in biological systems. This explosive progress was made with the efforts in determining the roles of carbohydrates in immunology, neurobiology and many other disciplines, examining each unique system and employing new technology. This volume represents the first of three in the Methods in Enzymology series, including Glycomics (vol. 416) and Functional Glycomics (vol. 417), dedicated to disseminating information on methods in determining the biological roles of carbohydrates. These books are designed to provide an introduction of new methods to a large variety of readers who would like to participate in and contribute to the advancement of glycobiology. The methods covered include structural analysis of carbohydrates, biological and chemical synthesis of carbohydrates, expression and determination of ligands for carbohydrate-binding proteins, gene expression profiling including micro array, and generation of gene knockout mice and their phenotype analyses.
In the past decade, there has been an explosion of progress in understanding the roles of carbohydrates in biological systems. This explosive progress was made with the efforts in determining the roles of carbohydrates in immunology, neurobiology and many other disciplines, examining each unique system and employing new technology. This volume represents the second of three in the Methods in Enzymology series, including Glycobiology (vol. 415) and Functional Glycomics (vol. 417), dedicated to disseminating information on methods in determining the biological roles of carbohydrates. These books are designed to provide an introduction of new methods to a large variety of readers who would like to participate in and contribute to the advancement of glycobiology. The methods covered include structural analysis of carbohydrates, biological and chemical synthesis of carbohydrates, expression and determination of ligands for carbohydrate-binding proteins, gene expression profiling including micro array, and generation of gene knockout mice and their phenotype analyses.
This series is world-renowned as the leading compilation of current
reviews of this vast field. Internationally acclaimed for more than
forty years, The Alkaloids: Chemistry and Biology, founded by the
late Professor R.H.F. Manske, continues to provide outstanding
coverage of this rapidly expanding field. Each volume provides,
through its distinguished authors, up-to-date and detailed coverage
of particular classes or sources of alkaloids.
This book reflects more than three decades of research on Cellular Automata (CA), and nearly a decade of work on the application of CA to model biological strings, which forms the foundation of 'A New Kind of Computational Biology' pioneered by the start-up, CARLBio. After a brief introduction on Cellular Automata (CA) theory and functional biology, it reports on the modeling of basic biological strings with CA, starting with the basic nucleotides leading to codon and anti-codon CA models. It derives a more involved CA model of DNA, RNA, the entire translation process for amino acid formation and the evolution of protein to its unique structure and function. In subsequent chapters the interaction of Proteins with other bio-molecules is also modeled. The only prior knowledge assumed necessary is an undergraduate knowledge of computer programming and biology. The book adopts a hands-on, "do-it-yourself" approach to enable readers to apply the method provided to derive the CA rules and comprehend how these are related to the physical 'rules' observed in biology. In a single framework, the authors have presented two branches of science - Computation and Biology. Instead of rigorous molecular dynamics modeling, which the authors describe as a Bottoms-Up model, or relying on the Top-Down new age Artificial Intelligence (AI) and Machine Language (ML) that depends on extensive availability of quality data, this book takes the best from both the Top-Down and Bottoms-up approaches and establishes how the behavior of complex molecules is represented in CA. The CA rules are derived from the basic knowledge of molecular interaction and construction observed in biological world but mapped to a few subset of known results to derive and predict results. This book is useful for students, researchers and industry practitioners who want to explore modeling and simulation of the physical world complex systems from a different perspective. It raises the inevitable the question - 'Are life and the universe nothing but a collection of continuous systems processing information'.
The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with more than 300 volumes (all of them still in print), the series contains much material still relevant today-truly an essential publication for researchers in all fields of life sciences.
The ability of polypeptides to form alternatively folded, polymeric
structures such as amyloids and related aggregates is being
increasingly recognized as a major new frontier in protein
research. This new volume of Methods in Enzymology along with Part
C (volume 413) on Amyloid, Prions and other Protein Aggregates
continue in the tradition of the first volume (309) in containing
detailed protocols and methodological insights, provided by leaders
in the field, into the latest methods for investigating the
structures, mechanisms of formation, and biological activities of
this important class of protein assemblies.
Springer Handbook of Enzymes provides data on enzymes sufficiently well characterized. It offers concise and complete descriptions of some 5,000 enzymes and their application areas. Data sheets are arranged in their EC-Number sequence and the volumes themselves are arranged according to enzyme classes. This new, second edition reflects considerable progress in enzymology: many enzymes are newly classified or reclassified. Each entry is correlated with references and one or more source organisms. New datafields are created: application and engineering (for the properties of enzymes where the sequence has been changed). The total amount of material contained in the Handbook has more than doubled so that the complete second edition consists of 39 volumes as well as a Synonym Index. In addition, starting in 2009, all newly classified enzymes are treated in Supplement Volumes. Springer Handbook of Enzymes is an ideal source of information for researchers in biochemistry, biotechnology, organic and analytical chemistry, and food sciences, as well as for medicinal applications.
Population genomics is a recently emerged discipline, which aims at understanding how evolutionary processes influence genetic variation across genomes. Today, in the era of cheaper next-generation sequencing, it is no longer as daunting to obtain whole genome data for any species of interest and population genomics is now conceivable in a wide range of fields, from medicine and pharmacology to ecology and evolutionary biology. However, because of the lack of reference genome and of enough "a priori" data on the polymorphism, population genomics analyses of populations will still involve higher constraints for researchers working on non-model organisms, as regards the choice of the genotyping/sequencing technique or that of the analysis methods. Therefore, "Data Production and Analysis in Population Genomics" purposely puts emphasis on protocols and methods that are applicable to species where genomic resources are still scarce. It is divided into three convenient sections, each one tackling one of the main challenges facing scientists setting up a population genomics study. The first section helps devising a sampling and/or experimental design suitable to address the biological question of interest. The second section addresses how to implement the best genotyping or sequencing method to obtain the required data given the time and cost constraints as well as the other genetic resources already available, Finally, the last section is about making the most of the (generally huge) dataset produced by using appropriate analysis methods in order to reach a biologically relevant conclusion. Written in the successful "Methods in Molecular Biology " series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, advice on methodology and implementation, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, "Data Production and Analysis in Population Genomics" serves a wide readership by providing guidelines to help choose and implement the best experimental or analytical strategy for a given purpose.
This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
Fluorescent proteins are intimately connected to research in the life sciences. Tagging of gene products with fluorescent proteins has revolutionized all areas of biosciences, ranging from fundamental biochemistry to clinical oncology, to environmental research. The discovery of the Green Fluorescent Protein, its first, seminal application and the ingenious development of a broad palette of fluorescence proteins of other colours, was consequently recognised with the Nobel Prize for Chemistry in 2008. "Fluorescent Proteins I" is devoted to the basic photophysical and photochemical aspects of fluorescent protein technology. Experienced experts highlight colour tuning, the exploration of switching phenomena and respective methods for their investigation. The book provides a thorough understanding of primary molecular processes allowing the design of fluorescent proteins for specific applications.
Glycosyltransferases (GTs) are essential for the biosynthesis of complex glycoconjugates and are powerful tools to study the functions of complex glycans in health, development and disease. Complex glycoconjugates, such as glycoproteins, proteoglycans and glycolipids, are assembled by GTs which synthesize specific linkages between sugars or sugars and protein. This is in contrast to the non-specific or less specific chemical glycation reactions, transglycosylation and reverse glycosylation reactions. Glycosyltransferases: Methods and Protocols contains a wide range of studies, methods and protocols which form a solid basis for investigations of the role and mechanisms, biology and pathology involving GTs. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Glycosyltransferases: Methods and Protocols is a vital contribution to glycobiology and glycopathology, and to applications of these enzymes in biotechnology and drug development. It will prove invaluable to students, postdoctoral fellows, and senior scientists carrying on research of GTs that has been intensified over the last years.
This book covers the most recent developments in the analysis of allosteric enzymes and provides a logical introduction to the limits for enzyme function as dictated by the factors that are limits for life. The book presents a complete description of all the mechanisms used for changing enzyme activity. It is extensively illustrated to clarify kinetic and regulatory properties. Eight enzymes are used as model systems after extensive study of their mechanisms. Wherever possible, the human form of the enzyme is used to illustrate the regulatory features.
Disulfide-containing proteins belong to a unique class of proteins for studying the mechanism of protein folding. Their folding mechanism can be analyzed by three distinct techniques: (1) The conventional denaturation-renaturation method (disulfide intact); (2) The disulfide oxidation method (oxidative folding); and (3) The emerging disulfide scrambling method. Each technique provides specific information as to how an unfolded disulfide protein refolds to form the native structure. This book is intended to highlight the knowledge of several important proteins (BPTI, RNase A, beta-Lactalbumin and Lysozyme etc.) that have been characterized in depth by these methodologies. The book will also devote sections to comparing these methodologies and chaperones (PDI and Dsb machineries) that facilitate folding of disulfide proteins. Folding of Disulfide Proteins aims to cover the knowledge of protein folding accumulated from studies of disulfide-containing proteins, including methodologies, folding pathways, and folding mechanism of numerous extensively characterized disulfide proteins. This book will be of interest to those interested in problems related to protein folding, and anyone who is interested in understanding the mechanism of protein misfolding and protein misfolding-related diseases. Folding of Disulfide Proteins aims to cover the knowledge of protein folding accumulated from studies of disulfide-containing proteins, including methodologies, folding pathways, and folding mechanism of numerous extensively characterized disulfide proteins. This book will be of interest to those interested in problems related to protein folding, and anyone who is interested in understanding the mechanism of protein misfolding and protein misfolding-related diseases.
The series Structure and Bonding publishes critical reviews on
topics of research concerned with chemical structure and bonding.
The scope of the series spans the entire Periodic Table and
addresses structure and bonding issues associated with all of the
elements. It also focuses attention on new and developing areas of
modern structural and theoretical chemistry such as nanostructures,
molecular electronics, designed molecular solids, surfaces, metal
clusters and supramolecular structures. Physical and spectroscopic
techniques used to determine, examine and model structures fall
within the purview of Structure and Bonding to the extent that the
focus is on the scientific results obtained and not on specialist
information concerning the techniques themselves. Issues associated
with the development of bonding models and generalizations that
illuminate the reactivity pathways and rates of chemical processes
are also relevant.The individual volumes in the series are
thematic. The goal of each volume is to give the reader, whether at
a university or in industry, a comprehensive overview of an area
where new insights are emerging that are of interest to a larger
scientific audience. Thus each review within the volume critically
surveys one aspect of that topic and places it within the context
of the volume as a whole. The most significant developments of the
last 5 to 10 years should be presented using selected examples to
illustrate the principles discussed. A description of the physical
basis of the experimental techniques that have been used to provide
the primary data may also be appropriate, if it has not been
covered in detail elsewhere. The coverage need not be exhaustive in
data, but should rather be conceptual, concentrating on the new
principles being developed that will allow the reader, who is not a
specialist in the area covered, to understand the data presented.
Discussion of possible future research directions in the area is
welcomed. Review articles for the individual volumes are invited by
the volume editors.
The centromere is a chromosomal region that enables the accurate segregation of chromosomes during mitosis and meiosis. It holds sister chromatids together, and through its centromere DNA-protein complex known as the kinetochore binds spindle microtubules to bring about accurate chromosome movements. Despite this conserved function, centromeres exhibit dramatic difference in structure, size, and complexity. Extensive studies on centromeric DNA revealed its rapid evolution resulting often in significant difference even among closely related species. Such a plasticity of centromeric DNA could be explained by epigenetic c- trol of centromere function, which does not depend absolutely on primary DNA sequence. According to epigenetic centromere concept, which is thoroughly d- cussed by Tanya Panchenko and Ben Black in Chap. 1 of this book, centromere activation or inactivation might be caused by modifications of chromatin. Such acquired chromatin epigenetic modifications are then inherited from one cell di- sion to the next. Concerning centromere-specific chromatin modification, it is now evident that all centromeres contain a centromere specific histone H3 variant, CenH3, which replaces histone H3 in centromeric nucleosomes and provides a structural basis that epigenetically defines centromere and differentiates it from the surrounding chromatin. Recent insights into the CenH3 presented in this chapter add important mechanistic understanding of how centromere identity is initially established and subsequently maintained in every cell cycle.
This book covers the recent innovations relating to various bioactive natural products (such as alkaloids, glycosides, flavonoids, anthraquinones, steroids, polysaccharides, tannins and polyphenolic compounds, volatile oils, fixed oils, fats and waxes, proteins and peptides, vitamins, marine products, camptothecin, piperines, carvacrol, gedunin, GABA, ginsenosides) and their applications in the pharmaceutical fields related to academic, research and industry.
In this fast moving field the main goal of this volume is to provide up-to-date information on the molecular and functional properties and pharmacology of mammalian TRP channels. Leading experts in the field describe properties of a single TRP protein/channel or portray more general principles of TRP function and important pathological situations linked to mutations of TRP genes or their altered expression. Thereby this volume on Transient Receptor Potential (TRP) Channels provides valuable information for readers with different expectations and backgrounds, for those who are approaching this field of research as well as for those wanting to make a trip to TRPs."
Since its inception in 1945, this serial has provided critical and
integrating articles written by research specialists that integrate
industrial, analytical, and technological aspects of biochemistry,
organic chemistry, and instrumentation methodology in the study of
carbohydrates. The articles provide a definitive interpretation of
the current status and future trends in carbohydrate chemistry and
biochemistry. |
![]() ![]() You may like...
Public Art Encounters - Art, Space and…
Martin Zebracki, Joni M. Palmer
Hardcover
R4,472
Discovery Miles 44 720
Acculturating the Shopping Centre
Janina Gosseye, Tom Avermaete
Paperback
R1,369
Discovery Miles 13 690
|