![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Biochemistry
The presence of modified nucleotides in cellular RNAs has been known for decades and over 100 distinct RNA modifications have been characterized to date. While the exact role of many of these modifications is still unclear, many are highly conserved across evolution and most contribute to the overall fitness of the organism. In recent years, new methods and bioinformatics approaches have been developed for the dissection of modification pathways and functions. These methods intersect a number of related fields, ranging from RNA processing to comparative genomics and systems biology. In addition, many of the techniques described in this volume have broad applicability, particularly in regards to the isolation, characterization, and reconstitution of ribonucleoprotein complexes, expanding the experimental repertoire available to all RNA researchers.
Small proteins with molecular weights of <25 kDa are involved in major biological processes such as ribosome formation, stress adaption and cell cycle control. The study of the low-molecular-weight proteome has identified many central regulators of biology such as cytokines, chemokines, peptide hormones and proteolytic fragments of larger proteins. Due to the unique features of these proteins, the technical challenges are different from those in "common" proteomics. In The Low Molecular Weight Proteome: Methods and Protocols expert researchers from the field provide protocols for analysis of low molecular weight proteins and peptides, protocols for such methods applied in clinical research and an up-to-date review of quantitative protein profiling by labeling. These include methods suitable for both peptide and protein analysis with focus on methods and application that can be used for small protein analysis. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, The Low Molecular Weight Proteome: Methods and Protocolsis a useful resource for experienced proteomics practitioners as well as an aid to newcomers who wish to become acquainted with the theory and practice of a wide array of methods in analyzing small proteins or peptides.
Multicellular organisms must be able to adapt to cellular events to
accommodate prevailing conditions. Sensory-response circuits
operate by making use of a phosphorylation control mechanism known
as the "two-component system."
The ubiquitin-proteasome system (UPS) and ubiquitin-related modifiers are not only involved in cellular protein quality control but also in the regulation of many fundamental cellular processes/pathways as well as in their disease-relevant aberrations. Ubiquitin Family Modifiers and Proteasome: Reviews and Protocols presents both novel developments in UPS research and important methods related to the main recent advances in the field of ubiquitin family modifiers. Divided into five convenient sections, this volume focuses on the enzymology and substrate identification of ubiquitin family modifiers, the recognition and chain formation of these modifiers, the analysis of proteasome biogenesis and function, protein quality control, and finally the use of small molecules and strategies to study or manipulate the function of the UPS and of ubiquitin family modifiers, respectively. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Ubiquitin Family Modifiers and Proteasome: Reviews and Protocols will be of great use to investigators and students engaged in both basic and applied research in life sciences.
Chemical Drug Design provides a compact overview on recent advances in this rapidly developing field. With contributions on in silico drug design, natural product based compounds, as well as on ligand- and structure-based approaches, the authors present innovative methods and techniques for identifying and synthetically designing novel drugs.
Multicellular organisms must be able to adapt to cellular events to
accommodate prevailing conditions. Sensory-response circuits
operate by making use of a phosphorylation control mechanism known
as the "two-component system."
The saga of sex differences in brain and behavior begins with a tiny sperm swimming toward a huge egg, to contribute its tiny Y chromosome plus its copies of the other chromosomes. Genetic, anatomic and physiologic alterations in the male ensue, making his brain and behavior different in specific respects from his sister. Brain-wise, specific cell groups develop differently in males compared to females, in some cases right after birth and in other cases at puberty. But genetics and neuroanatomy do not dominate the scene. Prenatal stress, postnatal stress and lousy treatment at puberty all can affect males and females in different ways. The upshot of all these genetic and environmental factors produces small sex differences in certain abilities and huge sex differences in feelings, in pain and in suffering. Put this all together and the reader will see that biological and cultural influences on gender roles operate at so many different levels to influence behavioral mechanisms that gender role choices are flexible, reversible and non-dichotomous, especially in modern societies.
This book focuses primarily on the role of interfacial forces in understanding biological phenomena at the molecular scale. By providing a suitable statistical mechanical apparatus to handle the biomolecular interface, the book becomes uniquely positioned to address core problems in molecular biophysics. It highlights the importance of interfacial tension in delineating a solution to the protein folding problem, in unravelling the physico-chemical basis of enzyme catalysis and protein associations, and in rationally designing molecular targeted therapies. Thus grounded in fundamental science, the book develops a powerful technological platform for drug discovery, while it is set to inspire scientists at any level in their careers determined to address the major challenges in molecular biophysics. The acknowledgment of how exquisitely the structure and dynamics of proteins and their aqueous environment are related attests to the overdue recognition that biomolecular phenomena cannot be effectively understood without dealing with interfacial behaviour. There is an urge to grasp how biologically relevant behaviour is shaped by the structuring of biomolecular interfaces and how interfacial tension affects the molecular events that take place in the cell. This book squarely addresses these needs from a physicist perspective. The book may serve as a monograph for practitioners and, alternatively, as an advanced textbook. Fruitful reading requires a background in physical chemistry and some basics in biophysics. The selected problems at the end of the chapters and the progression in conceptual difficulty make it a suitable textbook for a graduate level course or an elective course for seniors majoring in chemistry, physics, biomedical engineering or related disciplines.
Since the inception of this volume, the world's nancial climate has radically changed. Theemphasishasshiftedfromboomingeconomiesandeconomicgrowth totherealityofrecessionanddiminishingoutlook. Witheconomicdownturncomes opportunity,inallareasofchemistryfromresearchanddevelopmentthroughto productregistrationandriskassessment,replacementsarebeingsoughtforcostly time-consumingprocesses. Leadingamongstthereplacementsaremodelswithtrue predictivecapability. Ofthesecomputationalmodelsarepreferred. This volume addresses a broad need within various areas of the "chemical industries", from pharmaceuticals and pesticides to personal products to provide computationalmethodstopredicttheeffects,activitiesandpropertiesofmolecules. Itaddressestheuseofmodelstodesignnewmoleculesandassesstheirfateand effectsbothtotheenvironmentandtohumanhealth. Thereisanemphasisrunning throughoutthisvolumetoproducerobustmodelssuitableforpurpose. Thevolume aimstoallowthereaderto nddataanddescriptorsanddevelop,discoverandutilise validmodels. Gdansk, ' Poland TomaszPuzyn Jackson,MS,USA JerzyLeszczynski Liverpool,UK MarkT. D. Cronin May2009 CONTENTS Part I Theory of QSAR 1 QuantitativeStructure-ActivityRelationships(QSARs)- ApplicationsandMethodology...3 Mark T. D. Cronin 1. 1. Introduction...3 1. 2. PurposeofQSAR...4 1. 3. ApplicationsofQSAR...4 1. 4. Methods...5 1. 5. TheCornerstonesofSuccessfulPredictiveModels ...7 1. 6. AValidated(Q)SARoraValidPrediction? ...9 1. 7. UsinginSilicoTechniques ...9 1. 8. NewAreasforinSilicoModels...11 1. 9. Conclusions...11 References ...11 2 TheUseofQuantumMechanicsDerivedDescriptorsin ComputationalToxicology...13 Steven J. Enoch 2. 1. Introduction...13 2. 2. TheSchrodingerEquation...15 2. 3. Hartree-FockTheory...17 2. 4. Semi-EmpiricalMethods:AM1andRM1...18 2. 5. ABInitio:DensityFunctionalTheory...19 2. 6. QSARforNon-ReactiveMechanismsofAcute(Aquatic) Toxicity...19 2. 7. QSARsforReactiveToxicityMechanisms...21 2. 7. 1. AquaticToxicityandSkinSensitisation...21 2. 7. 2. QSARsforMutagenicity ...24 2. 8. FutureDirectionsandOutlook...25 2. 9. Conclusions...26 References ...26 vii viii Contents 3 MolecularDescriptors...29 Viviana Consonni and Roberto Todeschini 3. 1. Introduction...29 3. 1. 1. De nitions...29 3. 1. 2. History...31 3. 1. 3. Theoreticalvs. ExperimentalDescriptors...33 3. 2. MolecularRepresentation ...35 3. 3. TopologicalIndexes...38 3. 3. 1. MolecularGraphs...38 3. 3. 2. De nitionandCalculationofTopologicalIndexes(TIs) 39 3. 3. 3. Graph-TheoreticalMatrixes...42 3. 3. 4. ConnectivityIndexes ...48 3. 3. 5. CharacteristicPolynomial ...50 3. 3. 6. SpectralIndexes ...53 3. 4. AutocorrelationDescriptors ...
This book updates the latest development in production, stabilization and structural analysis techniques of membrane proteins. This field has made significant advances since the elucidation of the first 3-D structure of a recombinant G Protein Coupled Receptor (GPCR), rhodopsin, with the structure of several more GPCRs having been solved in the past five years. In fact, the 2012 Nobel Prize in Chemistry was awarded for groundbreaking discoveries on the inner workings of GPCRs. This book is essential reading for all researchers, biochemists and crystallographers working with membrane proteins, who are interested by the structural characterization of their favorite protein and who wish to follow the expression, migration, modifications and recycling of a membrane protein.
This book provides a knowledge-based view to the dynamic capabilities in an organization. The author integrates two existing views on gaining competitive advantage: the Knowledge View which suggests that the capability of organizations to learn faster than competitors is the only source of competitiveness; and the Dynamic Capability View which speculates that a fi rm's competitive advantage rests on it's ability to adapt to changes in the business environment. Using the IT sector in India as a case study, this book provides and tests a new framework-Knowledge-Based Dynamic Capabilities-in the prediction of competitive advantage in organizations.
With the development of new quantitative strategies and powerful bioinformatics tools to cope with the analysis of the large amounts of data generated in proteomics experiments, liquid chromatography with tandem mass spectrometry (LC-MS/MS) is making possible the analysis of proteins on a global scale, meaning that proteomics can now start competing with cDNA microarrays for the analysis of whole genomes. In LC-MS/MS in Proteomics: Methods and Applications, experts in the field provide protocols and up-to-date reviews of the applications of LC-MS/MS, with a particular focus on MS-based methods of protein and peptide quantification and the analysis of post-translational modifications. Beginning with overviews of the use of LC-M/MS in protein analysis, the book continues with topics such as protocols for the analysis of post-translational modifications, with particular focus on phosphorylation and glycosylation, popular techniques for quantitative proteomics, such as multiple reaction monitoring, metabolic labelling, and chemical tagging, biomarker discovery in biological fluids, as well as novel applications of LC-MS/MS. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective subjects, lists of necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, LC-MS/MS in Proteomics: Methods and Applications presents the techniques and concepts necessary in order to aid proteomic practitioners in the application of LC-MS/MS to essentially any biological problem.
This volume describes the methods of both in vivo and in vitro electroporation using ferrets, rats, mice, chickens, and zebrafish. Recent advances of experiments using the tetracycline-regulated gene expression and Tol2 transposon systems are also included. Written in the popular Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your own laboratory. Practical and authoritative, Electroporation Methods in Neuroscience serves to aid scientists in the further study into this crucially important way to study cells.
Exploring the 2-D gel mapping field, the chapters in this book are separated into four different categories: Part I talks about 2-D maps reproducibility and maps modeling; Part II describes the image analysis tools that provide spot volume datasets; Part III is about the statistical methods applied to spot volume datasets to identify candidate biomarkers; and Part IV discusses differential analysis from direct image analysis tools. 2-D PAGE Map Analysis: Methods and Protocols provides a unique approach to 2-D gel mapping, in that it helps users avoid drawbacks due to ignorance of the basic theoretical mechanisms underlying the technique, including data handling and proper tools for spot analysis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, 2-D PAGE Map Analysis: Methods and Protocols, is a useful resource for any scientist or researcher, with a mathematical background, who is interested in 2-D gel mapping.
This second of two volumes discusses subfamily proteins which function in molecular and vesicular transport mechanisms inside the cell. In this volume the focus lies on the Rab, Ran and Arf subfamily members. As in Volume 1, the book is written by international renowned scientists in the field of small G-proteins. In elaborate reviews, biochemistry, structure, function and G-protein - effector interactions are described. Together with Volume 1 this book provides an comprehensive state-of-the-art work on small G-proteins (GTPases). It is written for Graduates and Professors in Biochemistry and Cell Biology interested in the mechanism and function of small G-proteins but are extremely valuable for those who want to move into the field.
This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
This book discusses a broad range of basic and advanced topics in the field of protein structure, function, folding, flexibility, and dynamics. Starting with a basic introduction to protein purification, estimation, storage, and its effect on the protein structure, function, and dynamics, it also discusses various experimental and computational structure determination approaches; the importance of molecular interactions and water in protein stability, folding and dynamics; kinetic and thermodynamic parameters associated with protein-ligand binding; single molecule techniques and their applications in studying protein folding and aggregation; protein quality control; the role of amino acid sequence in protein aggregation; muscarinic acetylcholine receptors, antimuscarinic drugs, and their clinical significances. Further, the book explains the current understanding on the therapeutic importance of the enzyme dopamine beta hydroxylase; structural dynamics and motions in molecular motors; role of cathepsins in controlling degradation of extracellular matrix during disease states; and the important structure-function relationship of iron-binding proteins, ferritins. Overall, the book is an important guide and a comprehensive resource for understanding protein structure, function, dynamics, and interaction.
Protein analysis is increasingly becoming a cornerstone in deciphering the molecular mechanisms of life. Proteomics, the large-scale and high-sensitivity analysis of proteins, is already pivotal to the new life sciences such as Systems Biology and Systems Medicine. Proteomics, however, relies heavily on the past and future advances of protein purification and analysis methods. DIGE, being able to quantify proteins in their intact form, is one of a few methods that can facilitate this type of analysis and still provide the protein isoforms in an MS-compatible state for further identification and characterization with high analytical sensitivity. Differential Gel Electrophoresis: Methods and Protocols introduces the concept of DIGE and its advantages in quantitative protein analysis. It provides detailed protocols and important notes on the practical aspects of DIGE with both generic and specific applications in the various areas of Quantitative Proteomics. Divided into four concise sections, this detailed volume opens with the basics of DIGE, the technique and its practical details with a focus on the planning of a DIGE experiment and its data analysis. The next section introduces various DIGE methods from those employed by scientists world-wide to more novel methods, providing a glance at what is on the horizon in the DIGE world. The volume closes with an overview of the wide range of DIGE applications from Clinical Proteomics to Animal, Plant, and Microbial Proteomics applications. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Differential Gel Electrophoresis: Methods and Protocols can be used by novices with some background in biochemistry or molecular biology as well as by experts in Proteomics who would like to deepen their understanding of DIGE and its employment in many hyphenations and application areas. With its many protocols, applications, and methodological variants, it is also a unique reference for all who seek fundamental details on the working principle of DIGE and ideas for possible future uses of DIGE in novel analytical approaches.
This volume focuses on applications of split inteins, and the progress that has been made in the past 5 years on discovery and engineering of fast and more efficient split inteins. The first few chapters in Split Inteins: Methods and Protocols explore new techniques on how to use split inteins for affinity purification of overproduced proteins, and split-intein based technologies to prepare cyclic peptides and proteins. The next few chapters discuss semisynthetic protein trans-splicing using one synthetic intein piece, synthetic intein-extein pieces used to deliver other cargos for chemical modification both of purified proteins and of proteins in living cells, as well as isotopic labeling of proteins for NMR studies, and a discussion on how protein block copolymers can be generated by protein trans-splicing to form protein hydrogels. The last few chapters deal with intein applications in transgenic plants and conditional inteins that can be regulated in artificial ways by small molecules or light, a cassette-based approach to quickly test many intein insertion positions, and a computational approach to predict new intein split sites (the approach also works for other proteins). Written in the highly successful Methods in Molecular Biology series format, chapters include introduction to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Split Inteins: Methods and Protocols is a valuable resource that will provide guidance toward possibilities of split intein applications, explore proven and detailed protocols adaptable to various research projects, and inspire new method developments.
The literature on recoding is scattered, so this superb book ?lls a need by prov- ing up-to-date, comprehensive, authoritative reviews of the many kinds of recoding phenomena. Between 1961 and 1966 my colleagues and I deciphered the genetic code in Escherichia coli and showed that the genetic code is the same in E. coli, Xenopus laevis, and guinea pig tissues. These results showed that the code has been c- served during evolution and strongly suggested that the code appeared very early during biological evolution, that all forms of life on earth descended from a c- mon ancestor, and thus that all forms of life on this planet are related to one another. The problem of biological time was solved by encoding information in DNA and retrieving the information for each new generation, for it is easier to make a new organism than it is to repair an aging, malfunctioning one. Subsequently, small modi?cations of the standard genetic code were found in certain organisms and in mitochondria. Mitochondrial DNA only encodes about 10-13 proteins, so some modi?cations of the genetic code are tolerated that pr- ably would be lethal if applied to the thousands of kinds of proteins encoded by genomic DNA.
Cinnamon is the common name for the spice obtained from the dried inner bark of several species of the genus Cinnamomum in the Lauraceae family. In world trade, Cinnamomum cassia (L.) J. Presl Cinnamomum burmannii dominate, but it is of a different quality to 'true' or 'Ceylon' cinnamon produced from Cinnamomum zeylanicum Blume (C. verum J. Presl), with the latter much easier to process, giving a more delicate, sweeter flavor with nuances of clove, but more importantly with only traces (often below detection thresholds) of coumarin, compared with 5-7 g/kg in other species. Cinnamon has been a popular and expensive spice in many civilizations, including ancient Egypt, Rome and in 14th and 15th century Europe, where it was used primarily to preserve meat for its antibacterial properties, fine aroma and flavor. Ancient Egyptians used cinnamon in mummification process due to its antibacterial properties and fragrance. The quest for cinnamon brought many explorers to Ceylon, whose ancient history is intertwined with the cinnamon trade. Ancient Egyptians and Romans used cinnamon as a valued spice and as an incense. In recent years, much research has been conducted in crop improvement, processing and value addition in cinnamon. In addition to direct use as a condiment/spice, cinnamon has found a multitude of uses in the food and beverage, traditional medicine, pharmacology, nutraceutical and cosmetics industries. Ceylon cinnamon is unique in that oils distilled from the bark (major constituents are cinnamaldehyde and oleoresins), leaf (eugenol is the major constituent used in dentistry, perfumes, flavorings and as an antioxidant) and roots (camphor) have different industrial uses. Cinnamaldehyde is now a proven natural bactericide widely used in food and beverage industry, effective against Salmonella spp. and Escherichia coli. Thus, it has become an important natural component of organic fruit and vegetable juices to enhance microbial safety of these nutritious beverages. Because of its manifold uses, cinnamon is an important crop. There have been many recent publications on its ethnobotany, genetics, crop improvement, agronomy, processing, biotechnology, chemistry, food and medicinal uses, and industrial applications. However, one book condensing all these findings is lacking. Our publication, with chapters devoted to all these aspects of cinnamon written by experts in these fields, condenses current knowledge into a single source and contribute to the advancement and dissemination of knowledge and technology. Contributors to the book constitute internationally renowned senior scientists and academics with hands-on experience as well as movers and shakers of industry, thereby striking a right balance between theory and practice. Therefore it is a valuable source for students, teachers, scientists, planners policy makers, practicing agriculturists and industrialists, and a prized acquisition to any library in higher education institutions, R & D institutions and public and private sector institutions in agriculture and allied fields.
This volume presents authoritative and cutting-edge methods and protocols focusing on three tool boxes covering the increasingly diverse methodologies used to image selected proteins and to investigate their function by light and electron microscopy. The first tool box includes the development of a wide range of molecular and immunological probes to target specific proteins. The second details the use of these probes for high resolution fluorescence microscopy and the third focuses on applications for transmission and scanning electron microscopy. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls thus ensuring successful results in the further study of this vital field.
Carbohydrate microarrays emerged as a key technology for the deciphering of the glycospace by providing a multiplex technology where tens to hundreds of carbohydrates/protein interactions can be probed in parallel. Carbohydrate Microarrays: Methods and Protocols aims to give the reader the theoretical and experimental clues necessary for the fabrication and implementation of carbohydrate microarrays. This requires three essential steps: 1) to obtain the carbohydrate probes (monosacharides, oligosacchrides, polysacchairdes, glycoconjugates or glycoclusters), 2) to immobilize these probes, and 3) to implement the protocols for biological/biochemical interaction with the desired target. This volume gives an overview of carbohydrate microarray and carbohydrate chemistry and illustrates different detection techniques and their applications. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Carbohydrate Microarrays: Methods and Protocols compiles a catalogue of protocols on carbohydrate microarrays to span the needs of researchers around the globe.
DNA replication is arguably the most crucial process at work in living cells. It is the mechanism by which organisms pass their genetic information from one generation to the next and life on Earth would be unthinkable without it. Despite the discovery of DNA structure in the 1950s, the mechanism of its replication remains rather elusive. This work makes important contributions to this line of research. In particular, it addresses two key questions in the area of DNA replication: which evolutionary forces drive the positioning of replication origins in the chromosome and how is the spatial organization of replication factories achieved inside the nucleus of a cell?. A cross-disciplinary approach uniting physics and biology is at the heart of this research. Along with experimental support, statistical physics theory produces optimal origin positions and provides a model for replication fork assembly in yeast. Advances made here can potentially further our understanding of disease mechanisms such as the abnormal replication in cancer.
Renowned experts give all essential aspects of the techniques and applications of graft copolymers based on polysaccharides. Polysaccharides are the most abundant natural organic materials and polysaccharide based graft copolymers are of great importance and widely used in various fields. Natural polysaccharides have recently received more attention due to their advantages over synthetic polymers by being non-toxic, biodegradable and available at low cost. Modification of polysaccharides through graft copolymerization improves the properties of polysaccharides. Grafting is known to improve the characteristic properties of the backbones. Such properties include water repellency, thermal stability, flame resistance, dye-ability and resistance towards acid-base attack and abrasion. Polysaccharides and their graft copolymers find extensive applications in diversified fields. Applications of modified polysaccharides include drug delivery devices, controlled release of fungicides, selective water absorption from oil-water emulsions, purification of water etc. |
![]() ![]() You may like...
Inferences by Parallel Reasoning in…
Shahid Rahman, Muhammad Iqbal, …
Hardcover
R1,551
Discovery Miles 15 510
Semantic Models in IoT and eHealth…
Sanju Mishra Tiwari, Fernando Ortiz-Rodriguez, …
Paperback
R2,941
Discovery Miles 29 410
Logic on the Track of Social Change
David Braybrooke, Bryson Brown, …
Hardcover
R1,547
Discovery Miles 15 470
Essay on Machines in General (1786…
Raffaele Pisano, Jennifer Coopersmith, …
Hardcover
R3,911
Discovery Miles 39 110
|