![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Biochemistry
Spanning biological, mathematical, computational, and engineering sciences, computational biofluiddynamics addresses a diverse family of problems involving fluid flow inside and around living organisms, organs, tissue, biological cells, and other biological materials. Computational Hydrodynamics of Capsules and Biological Cells provides a comprehensive, rigorous, and current introduction to the fundamental concepts, mathematical formulation, alternative approaches, and predictions of this evolving field. In the first several chapters on boundary-element, boundary-integral, and immersed-boundary methods, the book covers the flow-induced deformation of idealized two-dimensional red blood cells in Stokes flow, capsules with spherical unstressed shapes based on direct and variational formulations, and cellular flow in domains with complex geometry. It also presents simulations of microscopic hemodynamics and hemorheology as well as results on the deformation of capsules and cells in dilute and dense suspensions. The book then describes a discrete membrane model where a surface network of viscoelastic links emulates the spectrin network of the cytoskeleton, before presenting a novel two-dimensional model of red and white blood cell motion. The final chapter discusses the numerical simulation of platelet motion near a wall representing injured tissue. This volume provides a roadmap to the current state of the art in computational cellular mechanics and biofluiddynamics. It also indicates areas for further work on mathematical formulation and numerical implementation and identifies physiological problems that need to be addressed in future research. MATLAB (R) code and other data are available at http://dehesa.freeshell.org/CC2
This fourth volume in the series on biochemistry looks at foundations in modern biochemistry. Topics covered include: the genetic solution; the genetic basis of development; DNA repair; evolution in an RNA world; nitrogen fixation; solute channels; viruses; biochemistry in retrospect and propspect.
Receptor Tyrosine Kinase: Structure, Functions and Role in Human Disease, for the first time, systematically covers the shared structural and functional features of the RTK family. Receptor Tyrosine Kinases (RTKs) play critical roles in embryogenesis, normal physiology and several diseases. And over the last decade they have become the Number 1 targets of cancer drugs. To be able to conduct fundamental research or to attempt to develop pharmacological agents able to enhance or intercept them, it is essential first to understand the evolutionary origin of the 58 RTKs and their roles in invertebrates and in humans, as well as downstream signaling pathways. The assembly of chapters is written by experts and underscores commonalities between and among the RTKs. It is an ideal companion volume to The Receptor Tyrosine Kinase: Families and Subfamilies, which proceeds, family by family through all of the specific subfamilies of RTKs, along with their unique landmarks.
This book presents modern and classic analytical approaches that are crucial for the biochemical and functional characterization of the archetypal protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The distinguishing feature of the book is that it covers, in addition to other methods, some of the uncommon but valuable techniques as well. For example, in-gel visualization of enzyme activity, immunoblotting protocols for native (non-denatured) proteins, and proteins resolved by pH-gradient [IEF-isoelectrofocusing], etc. These expedient methods are relevant and vital for the verification of biochemical properties of GAPDH, or similar protein of interest. This work outlines detailed protocols that are essential to investigate classical (cellular) and recently reported extracellular (secretory) isoforms of GAPDH. Precisely, the book covers techniques pertinent to enzymatic and non-enzymatic analysis of GAPDH that include, but not limited to, electrophoretic mobility shift assay (EMSA), two-dimensional (2D)-immunoblotting, immunofluorescence/confocal microscopy, mass spectrometry, ion-exchange and affinity chromatography. Readers will discover the importance of the experimental methods described in the book as they relate to the evaluation of the role and significance of GAPDH. Furthermore, majority of the methods described in the book have also been validated in the author's laboratory, besides other research groups worldwide, underlining the repeatability and reproducibility of the protocols. Each method begins with an abstract and a brief background emphasizing its application and relevance. This will enable the readers to determine the choice of experimental design according to their research objectives. The book explains the methods systematically with ample illustrations to facilitate quick and easy comprehension of the practical knowledge. Although the book is focused on GAPDH, many of the protocols may be adopted to other proteins or enzymes with minimal modifications. Noteworthy, it is unequivocally established that GAPDH is a multifunctional protein involved in several cellular processes of health & disease conditions. Hence, this book will be a valuable practical guide for young researchers, scientists and clinician-scientists.
This work establishes linear-scaling density-functional theory (DFT) as a powerful tool for understanding enzyme catalysis, one that can complement quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics simulations. The thesis reviews benchmark studies demonstrating techniques capable of simulating entire enzymes at the ab initio quantum-mechanical level of accuracy. DFT has transformed the physical sciences by allowing researchers to perform parameter-free quantum-mechanical calculations to predict a broad range of physical and chemical properties of materials. In principle, similar methods could be applied to biological problems. However, even the simplest biological systems contain many thousands of atoms and are characterized by extremely complex configuration spaces associated with a vast number of degrees of freedom. The development of linear-scaling density-functional codes makes biological molecules accessible to quantum-mechanical calculation, but has yet to resolve the complexity of the phase space. Furthermore, these calculations on systems containing up to 2,000 atoms can capture contributions to the energy that are not accounted for in QM/MM methods (for which the Nobel prize in Chemistry was awarded in 2013) and the results presented here reveal profound shortcomings in said methods.
This first volume of the Trilogy of Traditional Foods, part of the ISEKI Food Series, covers general and consumer aspects of traditional foods. It offers numerous recipes of traditional foods from across the world, with some chapters providing detailed descriptions on how to mix, cook, bake or store a particular food item in order to produce the desired effect. Traditional Foods; General and Consumer Aspects is divided into six sections. The first section focuses on general aspects of traditional foods and covers the perception of traditional foods and some general descriptions of traditional foods in different countries. This is followed by sections on Traditional Dairy Products, Traditional Cereal Based Products, Traditional Meat and Fish Products, Traditional Beverages and Traditional Deserts, Side Dishes and Oil products from various countries. The international List of Contributors, which includes authors from China, Bulgaria, Portugal, France, Norway, Romania, Slovakia, and Brazil, to name a few, shows its truly international perspective. The volume caters to the practicing food professional as well as the interested reader.
Respiration in plants, as in all living organisms, is essential to provide metabolic energy and carbon skeletons for growth and maintenance. As such, respiration is an essential component of a planta (TM)s carbon budget. Depending on species and environmental conditions, it consumes 25-75% of all the carbohydrates produced in photosynthesis a" even more at extremely slow growth rates. Respiration in plants can also proceed in a manner that produces neither metabolic energy nor carbon skeletons, but heat. This type of respiration involves the cyanide-resistant, alternative oxidase; it is unique to plants, and resides in the mitochondria. The activity of this alternative pathway can be measured based on a difference in fractionation of oxygen isotopes between the cytochrome and the alternative oxidase. Heat production is important in some flowers to attract pollinators; however, the alternative oxidase also plays a major role in leaves and roots of most plants. A common thread throughout this volume is to link respiration, including alternative oxidase activity, to plant functioning in different environments.
This book is the latest volume in a highly successful series within Comprehensive Biochemistry and provides a historical and autobiographical perspective of the development of the field through the contributions of leading individuals who reflect on their careers and their impact on biochemistry. The book is essential reading for everybody, from graduate student to professor, placing in context major advances not only in biochemical terms but in relation to historical and social developments. Readers will be delighted by the lively style and the insight into the lives and careers of leading scientists of their time.
This book provides coverage, methodology, and laboratory protocols on the more essential aspects of protein tyrosine phosphatase (PTP) function and regulation, including the use of standardized in vitro functional assays, suitable cell systems, and animal and microorganism models. Chapters covering state-of-the-art technical approaches suitable to decipher the physiologic roles of PTPs, and their involvement in tissue-specific functions, are also included, which will be of utility for both newcomers and experienced researchers in the field of tyrosine- and phosphoinositide- phosphorylation/dephosphorylation. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Protein Tyrosine Phosphatases: Methods and Protocols aims to aid researchers in better defining the common and individual features of the PTP family members and translating this knowledge into PTP-based therapy for human disease.
Following on from Advances in BioChirality, Progress in Biological Chirality provides a unique summary and review of the most recent developments in the field of biochirality. Living organisms use only one enantiomer of chiral molecules in the majority of biologically important processes. The exact origin and mechanisms for this surprising selectivity are not yet known. This book discusses current research aimed at identifying the scientific reasons that may contribute to this phenomenon. Progress in Biological Chirality takes an interdisciplinary
approach to this exciting field, covering a wide range of topics,
such as, theory, palaeontology and food technology, to name but a
few. This book presents findings via a broad spectrum of scientific
approaches making it an excellent overview of Biological Chirality,
suitable for postgraduate students, practitioners and researchers
in the field of chemistry, biochemistry, biology, palaeontology,
and food science with an interest in Chirality.
Blood science has become a cornerstone of multiple disciplines, including clinical chemistry, disease diagnosis, and therapeutic monitoring. Over the past decade, we have witnessed the advent of increasingly powerful proteomics technologies that allow greater fundamental insights into the blood proteome. These technological improvements have, in part, fuelled the quest for the discovery of novel blood-based biomarkers of disease. Serum/Plasma Proteomics: Methods and Protocols is a comprehensive resource of protocols for areas, pre-analytical through to analytical, of plasma and serum proteomics. Divided into five convenient sections, this detailed volume covers fractionation strategies for in-depth blood proteome analysis, defined procedures for blood collection, handling and storage, detailed protocols for performing both antibody-based and non-antibody based quantitative assays, proteome analysis of blood cell compartments, circulating nanomebraneous vesicles and blood-related fluids, and finally data management, statistical design, and bioinformatic challenges. This book, contributed to by leading experts in the field, provides a valuable foundation for the development and application of blood-based proteomics. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Serum/Plasma Proteomics: Methods and Protocols, with its well-honed methodologies, seeks to serve both professionals and investigators new to the field in an effort to further our knowledge of this fundamental science.
In one volume this book provides useful and innovative protocols developed specifically for the proteomic profiling of human tissues. The book provides high-throughput gel-based techniques, microarrays and a number of other methods used in proteomic research. This important book will prove indispensable to investigators of biomarker discovery and therapeutic response profiling, as well as those forging new paths in the fields of theranostics and personalized medicine.
A multiplicity of biotrophic micro-organisms interact with plants in nature, forming symbiotic relationships that range from mutualism to antagonism. Microorganisms that have adopted biotrophy as a lifestyle are able to colonize the plant and often to cross the plant cell boundaries by forming intracellular structures that are the site of nutrient uptake/exchange. To establish themselves within plant tissues, both mutualistic and pathogenic biotrophs need to overcome the plant defense response through an exchange of molecular signals. Our knowledge of the nature of these signals and their function in the interaction has rapidly increased over the last few years. This volume focuses on the genetic, molecular and cellular components involved in the communication between partners of well-known symbioses, but also reports on the advances for less studied systems.
DNA in the nucleus of plant and animal cells is stored in the form of chromatin. Chromatin and the Chromatin remodelling enzymes play an important role in gene transcription.
Recent major advances in our understanding of modulating protein
functions has led to the development of new methods and algorithms
to predict and decipher how amino acid sequences shape
three-dimensional structures. Protein Design: Methods and
Applications presents the most up-to-date protein design and
engineering strategies so that readers can undertake their own
projects with a maximum chance of success.
Phosphorus (P) is a finite resource which is essential for life. It is a limiting nutrient in many ecosystems but also a pollutant which can affect biodiversity in terrestrial ecosystems and change the ecology of water bodies. This book collects the latest information on biological processes in soil P cycling, which to date have remained much less understood than physico-chemical processes. The methods section presents spectroscopic techniques and the characterization of microbial P forms, as well as the use of tracers, molecular approaches and modeling of soil-plant systems. The section on processes deals with mycorrhizal symbioses, microbial P solubilization, soil macrofauna, phosphatase enzymes and rhizosphere processes. On the system level, P cycling is examined for grasslands, arctic and alpine soils, forest plantations, tropical forests, and dryland regions. Further, P management with respect to animal production and cropping, and the interactions between global change and P cycling, are treated.
The aim of this volume is to brief researchers of the importance of
data analysis in enzymology, and of the modern methods that have
developed concomitantly with computer hardware. It is also to
validate researchers' computer programs with real and synthetic
data to ascertain that the results produced are what they expected.
Liposomes are cellular structures made up of lipid molecules.
Important as a cellular model in the study of basic biology,
liposomes are also used in clinical applications such as drug
delivery and virus studies. Liposomes Part D is a continuation of
previous MIE Liposome volumes A, B, and C.
While structure-function relationships of proteins have been studied for a long time, structural studies of RNA face additional challenges. Nevertheless, with the continuous discovery of novel RNA molecules with key cellular functions and of novel pathways and interaction networks, the need for structural information of RNA is still increasing. This volume provides an introduction into techniques to assess structure and folding of RNA. Each chapter explains the theoretical background of one technique, and illustrates possibilities and limitations in selected application examples.
This volume addresses current methods in biological imaging, including extensive sections on MRI, CAT, NMR, PET and other imaging techniques.
In this volume expert researchers in the field detail the operations of microchip capillary electrophoresis. Chapters focus on small molecule, biomolecule applications, various detection modes, and sample preparation approaches are described. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Microchip Capillary Electrophoresis Protocol aids scientists in continuing to study microchip capillary electrophoresis.
Interdisciplinary knowledge is becoming more and more important to the modern scientist. This invaluable textbook covers bioanalytical chemistry (mainly the analysis of proteins and DNA) and explains everything for the nonbiologist. Electrophoresis, mass spectrometry, biosensors, bioassays, DNA and protein sequencing are not necessarily all included in conventional analytical chemistry textbooks. The book describes the basic principles and the applications of instrumental and molecular methods. It is particularly useful to chemistry and engineering students who already have some basic knowledge about analytical chemistry.
New Antisense Strategies: Chemical Synthesis of RNA Oligomers, by Junichi Yano und Gerald E. Smyth Development and Modification of Decoy Oligodeoxynucleotides for Clinical Application, by Mariana Kiomy Osako, Hironori Nakagami und Ryuichi Morishita Modulation of Endosomal Toll-Like Receptor-Mediated Immune Responses by Synthetic Oligonucleotides, by Ekambar R. Kandimalla und Sudhir Agrawal Delivery of Nucleic Acid Drugs, by Yan Lee und Kazunori Kataoka Aptamer: Biology to Applications, by Yoshikazu Nakamura Development and Clinical Applications of Nucleic Acid Therapeutics, by Veenu Aishwarya, Anna Kalota und Alan M. Gewirtz
"Immuno Systems Biology" aims to study the immune system in the more integrated manner on how cells and molecules participate at different system levels to the immune function. Through this bookKumar Selvarajoointroduces to physicists, chemists, computer scientists, biologists and immunologists the idea of an integrated approach to the understanding of mammalian immune system. Geared towards a researcher with limited immunological and computational analytical experience, the book provides a broad overview to the subject and some instruction in basic computational, theoretical and experimental approaches. The book links complex immunological processes with computational analysis and emphasizes the importance of immunology to themammalian system. " |
You may like...
Role of Inflammation in Environmental…
Michael Aschner, Lucio G. Costa
Paperback
R5,199
Discovery Miles 51 990
Neurobiology of Bipolar Disorder - Road…
Joao Luciano de Quevedo, Andre Ferrer Carvalho, …
Paperback
R4,035
Discovery Miles 40 350
|