![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Biochemistry
The discovery that nitrogen monoxide or nitric oxide (NO)is a biologically produced free radical has revolutionized our thinking about physiological and pathological processes. This discovery has ignited enormous interest in the scientific community. When generated at low levels, NO is a signaling molecule, but at high concentration, NO is a cytotoxic molecule. The physiological and pathological processes of NO production and metabolism and its targets, currently areas of intensive research, have important pharmacologic implications for health and disease.
The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 400 volumes (all of them still in print), the series contains much material still relevant today truly an essential publication for researchers in all fields of life sciences. Methods in Enzymology is now available online at ScienceDirect
full-text online of volumes 1 onwards. For more information about
the Elsevier Book Series on ScienceDirect Program, please
visit:
DNA and RNA fractions have been isolated from the whole blood, serum, plasma, the surface of blood cells, urine, saliva and spinal fluid from both healthy individuals and clinical patients. Recent developments are presented concerning the isolation, quantification and analysis of these molecules and their use in the identification of specific nucleic acid fragments related to a variety of clinical disorders thereby permitting their early diagnosis and prognosis.
The goal of the characterization and discovery of G protein-coupled receptors, arguably the most important class of signaling molecules in humans and other vertebrates, has spawned numerous vital methodologies. In "Methods for the Discovery and Characterization of G Protein-Coupled Receptors," experts in the field present the very latest on the methods and technology used to characterize and discover novel mechanisms of GPCRs which, in many cases, can be used directly to design experiments for the reader s particular GPCR of interest and their specific avenue of investigation. Divided into four convenient sections, this detailed volume covers GPCRs in the genome, trafficking of GPCRs, GPCRs on the membrane, as well as the regulation of these key receptors. Chapters also feature an important section called Future Directions which gives the reader an insight into advances soon to be realized in each area. Written for the popular "Neuromethods" series, this book contains the kind of detailed description and implementation advice that is crucial for getting optimal results. Authoritative and cutting-edge, "Methods for the Discovery and Characterization of G Protein-Coupled Receptors" serves as an ideal guide for scientists determined to further our knowledge of crucially important set of receptors.
Presenting a new way to examine water quality criteria, this volume provides concise, critical reviews of timely advances in the field of xenobiotics. The text explores the research findings and procedures of The University of California-Davis Methodology for Deriving Aquatic Life Pesticide Water Quality Criteria.
The Editors invited selected authors who had participated in or observed the explosive development of biochemistry and molecular biology particularly in the second half of this century to record their personal recollections of the times and circumstances in which they did their work. The authors were given a completely free rein with respect to both content and style and the editors have made no attempt to impose any sort of uniformity in the chapters. Each reflects the flavour of the personality of the author. The contributors to this volume encompass a wide variety of experiences in many different countries and in very different fields of biochemistry. Some have worked close to the laboratory bench throughout their scientific life and are continuing to do so. Others have been closely engaged in organisational matters, both nationally and internationally. All mention incidents in their own career or have observed those in others that will be of interest to future historians who will record and assess the period in which our contributors lived and worked. It was an extremely exciting time for life sciences.
The critically acclaimed laboratory standard for more than 40 years, "Methods in Enzymology" is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 400 volumes (all of them still in print), the series contains much material still relevant today-truly an essential publication for researchers in all fields of life sciences. "Methods in Enzymology" is now available online at ScienceDirect
- full-text online of volume 1 onward. For more information about
the Elsevier Book Series on ScienceDirect Program, please
visit:
Conceived with the intention of providing an array of strategies and technologies currently in use for glyco-engineering distinct living organisms, this book contains a wide range of methods being developed to control the composition of carbohydrates and the properties of proteins through manipulations on the production host rather than in the protein itself. The first five sections deal with host-specific glyco-engineering and contain chapters that provide protocols for modifications of the glycosylation pathway in bacteria, yeast, insect, plants and mammalian cells, while the last two sections explore alternative approaches to host glyco-engineering and selected protocols for the analysis of the N-glycans and glyco-profiling by mass spectrometry. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Authoritative and extensive, Glyco-Engineering: Methods and Protocols offers vast options to help researchers to choose the expression system and approach that best suits their intended protein research or applications.
The intent in initiating this volume was to bring together a series
of essays which would define our present understanding of the
endosome and lysosome and their interrelationship. The editors
deliberately encouraged the contributors to be speculative; to
strive to put order to the "real" world of incomplete and sometimes
conflicting data. Seeing science from the laboratory bench can
often be like viewing an impressionistic painting from up close; a
series of paint dabs with no apparent order. The contributors to
this volume were asked to step back and leave the reader with a
sense of the whole as well as the detail. To the extent that this
has happened, the credit should go to the individual authors.
Part I covers modern advances in the determination of
Biochemistry laboratory manual for undergraduates - an inquiry based approach by Gerczei and Pattison is the first textbook on the market that uses a highly relevant model, antibiotic resistance, to teach seminal topics of biochemistry and molecular biology while incorporating the blossoming field of bioinformatics. The novelty of this manual is the incorporation of a student-driven real real-life research project into the undergraduate curriculum. Since students test their own mutant design, even the most experienced students remain engaged with the process, while the less experienced ones get their first taste of biochemistry research. Inclusion of a research project does not entail a limitation: this manual includes all classic biochemistry techniques such as HPLC or enzyme kinetics and is complete with numerous problem sets relating to each topic.
The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 400 volumes (all of them still in print), the series contains much material still relevant today truly an essential publication for researchers in all fields of life sciences. Methods in Enzymology is now available online at ScienceDirect
full-text online of volumes 1 onwards. For more information about
the Elsevier Book Series on ScienceDirect Program, please
visit:
Given the critical importance of insect immunology in insect
vector-parasite interactions and vector control, biological control
of agricultural insect pests, and other key areas of entomological
research and practice, a new comprehensive work summarizing recent
breakthroughs in this rapidly expanding field is sorely needed.
This work will constitute the first book-length publication on the
topic of insect immunology since 1991, complimenting earlier works
by offering a fresh perspective on current research. Interactions
of host immune systems with both parasites and pathogens will be
presented as well as the genomics and proteomics approaches which
have been lacking in other publication.
This book focuses on an "outside the box" notion by utilizing the powerful applications of next-generation sequencing (NGS) technologies in the interface of chemistry and biology. In personalized medicine, developing small molecules targeting a specific genomic sequence is an attractive goal. N-methylpyrrole (P)-N-methylimidazole (I) polyamides (PIPs) are a class of small molecule that can bind to the DNA minor groove. First, a cost-effective NGS (ion torrent platform)-based Bind-n-Seq was developed to identify the binding specificity of PIP conjugates in a randomized DNA library. Their biological influences rely primarily on selective DNA binding affinity, so it is important to analyze their genome-wide binding preferences. However, it is demanding to enrich specifically the small-molecule-bound DNA without chemical cross-linking or covalent binding in chromatinized genomes. Herein is described a method that was developed using high-throughput sequencing to map the differential binding sites and relative enriched regions of non-cross-linked SAHA-PIPs throughout the complex human genome. SAHA-PIPs binding motifs were identified and the genome-level mapping of SAHA-PIPs-enriched regions provided evidence for the differential activation of the gene network. A method using high-throughput sequencing to map the binding sites and relative enriched regions of alkylating PIP throughout the human genome was also developed. The genome-level mapping of alkylating the PIP-enriched region and the binding sites on the human genome identifies significant genomic targets of breast cancer. It is anticipated that this pioneering low-cost, high through-put investigation at the sequence-specific level will be helpful in understanding the binding specificity of various DNA-binding small molecules, which in turn will be beneficial for the development of small-molecule-based drugs targeting a genome-level sequence.
The aim of this book is to return to the biomimicry and medicinal potential that inspired many of the early supramolecular chemists and to set it in the context of current advances in the field. Following an overview of supramolecular chemistry, the first section considers the efforts made to synthesize artificial systems that mimic biological entities. The second section addresses the application of supramolecular principles to molecular diagnostics with a particular emphasis on the receptor-relayreporter motif. Many of the examples chosen have clinical importance. The third section takes the clinical diagnostic theme further and demonstrates the therapeutic applications of supramolecular chemistry through photodynamic therapy, drug delivery, and the potential for synthetic peptides to form antibiotic tubes. The short epilogue considers the potential for supramolecular solutions to be found for further challenges in biomimetic and therapeutic chemistry.
This book presents the latest findings in the field of research of mechanosensitivity and mechanotransduction in different cells and tissues. Mechanosensitivity and mechanotransduction of the heart and vascular cells, in the lung, in bone and joint tissues, in sensor systems and in blood cells are described in detail. This Volume focuses on molecular mechanisms of mechanosensitivity and mechanotransduction via cytoskeleton. Integrin-mediated mechanotransduction, the role of actin cytoskeleton and the role of other cytoskeletal elements are discussed. It contains a detailed description of several stretch-induced signaling cascades with multiple levels of crosstalk between different pathways. It contains a description of the role of nitric oxide in regulation of cardiac activity and in regulation of mechanically gated channels in the heart. In the heart mechanical signals are propagated into the intracellular space primarily via integrin-linked complexes, and are subsequently transmitted from cell to cell via paracrine signaling. Biochemical signals derived from mechanical stimuli activate both acute phosphorylation of signaling cascades, such as in the PI3K, FAK, and ILK pathways, and long-term morphological modii cations via intracellular cytoskeletal reorganization and extracellular matrix remodelling. Cellular and molecular effects of mechanical stretch on vascular cells are also discussed. This Volume highlights the role of mechanotransduction in the lung, in bone and joint tissues. For the first time mechanosensitivity and mechanotransduction in blood cells are discussed. It contains new insights into mechanosensitive K+ channels functioning in mouse B lymphocytes. This book is a unique collection of reviews outlining current knowledge and future developments in this rapidly growing field. Currently, investigations of the molecular mechanisms of mechanosensitivity and mechanotransduction are focused on several issues. The majority of studies investigate intracellular signaling pathways. Knowledge of the mechanisms which underlie these processes is necessary for understanding of the normal functioning of different organs and tissues and allows to predict changes, which arise due to alterations of their environment. Possibly such knowledge will allow the development of new methods of artificial intervention and therapies. This book brings up the problem closer to the experts in related medical and biological sciences as well as practicing doctors besides just presenting the latest achievements in the field.
From being to becoming important, myo-inositol and its derivatives including phosphoinositides and phosphoinositols involved in diversi?ed functions in wide varieties of cells overcoming its insigni?cant role had to wait more than a century. Myo-inositol, infact, is the oldest known inositol and it was isolated from muscle as early as 1850 and phytin (Inositol hexakis phosphate) from plants by Pfeffer in 1872. Since then, interest in inositols and their derivatives varied as the methodology of isolation and puri?cation of the stereoisomers of inositol and their derivatives advanced. Phosphoinositides were ?rst isolated from brain in 1949 by Folch and their structure was established in 1961 by Ballou and his coworkers. After the compilation of scattered publications on cyclitols by Posternak (1965), proceedings of the conference on cyclitols and phosphoinositides under the supervision of Hoffmann-Ostenhof, were p- lished in 1969. Similar proceedings of the second conference on the same s- ject edited by Wells and Eisenberg Jr was published in 1978. In that meeting at the concluding session Hawthorne remarked "persued deeply enough p- haps even myoinositol could be mirror to the whole universe." This is now infact the scenario on the research on inositol and their phosphoderivatives. Finally a comprehensive information covering the aspects of chemistry, b- chemistry and physiology of inositols and their phosphoderivatives in a book entitled Inositol Phosphates written by Cosgrove (1980) was available.
Medicinal chemistry is both science and art. The science of medicinal chemistry offers mankind one of its best hopes for improving the quality of life. The art of medicinal chemistry continues to challenge its practitioners with the need for both intuition and experience to discover new drugs. Hence sharing the experience of drug research is uniquely beneficial to the field of medicinal chemistry. Drug research requires interdisciplinary team-work at the interface between chemistry, biology and medicine. Therefore, the topic-related series Topics in Medicinal Chemistry covers all relevant aspects of drug research, e.g. pathobiochemistry of diseases, identification and validation of (emerging) drug targets, structural biology, drugability of targets, drug design approaches, chemogenomics, synthetic chemistry including combinatorial methods, bioorganic chemistry, natural compounds, high-throughput screening, pharmacological in vitro and in vivo investigations, drug-receptor interactions on the molecular level, structure-activity relationships, drug absorption, distribution, metabolism, elimination, toxicology and pharmacogenomics. In general, special volumes are edited by well known guest editors.
New genes and diversity leading to adaptation and evolution are generated in special areas of genomes. One such area in all eukaryotic genomes and in those prokaryotes with linear chromosomes is the region near the ends of the chromosomes. These telomere-associated sequences or subtelomeres, have different properties than the rest of the genome and are one of the most exciting frontiers left in genomics. This book provides a broad introduction to the field of subtelomeres with detailed information from various fields and systems, covering yeasts and fungi, pathogens and parasites, plants, insects, humans and primates and bacteria with linear chromosomes. Advances in the field as well as continuing challenges are discussed throughout. The mosaic nature of this collection and the everchanging perspectives reflect the nature of subtelomeres themselves. Unlike the core of most genomes, which are conserved and stable over time, subtelomeres are dynamic and polymorphic, so much so that generally no two individuals look alike in these regions. The dynamic nature of the region and the ability to change the copy number, generate diversity and try novel combinations make it the evolutionary tinker s toolbox. In many organisms the genes found in the region are involved in dealing with the environment. In yeasts, different gene families involved in sugar metabolism as well as clumping together are found in subtelomeres and differences in the region may be the reason why some strains are good for baking, others for brewing and why some are pathogenic. In fungal plant and animal pathogens, many of the genes involved in virulence are found here. In humans and primates there are a number of gene families that vary between ends, for example the diverse olfactory receptor genes. Even in bacterial linear chromosomes the region contains genes involved in adapting to their environments. Perhaps the ultimate use of these regions is in parasites where they rapidly adapt and escape from host immune systems through dynamic changes to the proteins exposed to the host s defenses. Such dynamic, polymorphic structures are also found in plants and insects though it is not always clear what the function might be; in some cases they take on the role of end maintenance. The dynamic, polymorphic nature of subtelomeres, where many ends share segmental duplications, is an exciting area for study but also presents a difficult challenge from the technical perspective."
Mathematical and computational biology is playing an increasingly
important role in the biological sciences. This science brings
forward unique challenges, many of which are, at the moment, beyond
the theoretical techniques available. Developmental biology, due to
its complexity, has lagged somewhat behind its sister disciplines
(such as molecular biology and population biology) in making use of
quantitative modeling to further biological understanding. This
volume comprises work that is among the best developmental modeling
available and we feel it will do much to remedy this
situation.
This book addresses the therapeutic strategies to target mitochondrial metabolism in diseases where the function of that organelle is compromised, and it discusses the effective strategies used to create mitochondrial-targeted agents that can become commercially available drug delivery platforms. The consistent growth of research focused in understanding the multifaceted role of mitochondria in cellular metabolism, controlling pathways related with cell death, and ionic/redox regulation has extended the research of mitochondrial chemical-biological interactions to include various pharmacological and toxicological applications. Not only does the book extensively cover basic mitochondrial physiology, but it also links the molecular interactions within these pathways to a variety of diseases. It is one of the first books to combine state-of-the-art reviews regarding basic mitochondrial biology, the role of mitochondrial alterations in different diseases, and the importance of that organelle as a target for pharmacological and non-pharmacological interventions to improve human health. The different chapters highlight the chemical-biological linkages of the mitochondria in context with drug development and clinical applications.
Driven in part by the development of genomics, proteomics, and
bioinformatics as new disciplines, there has been a tremendous
resurgence of interest in physical methods to investigate
macromolecular structure and function in the context of living
cells. This volume in Methods in Cell Biology is devoted to
biophysical techniques "in vitro" and their applications to
cellular biology. The volume covers methods-oriented chapters on
fundamental as well as cutting-edge techniques in molecular and
cellular biophysics. This book is directed toward the broad
audience of cell biologists, biophysicists, pharmacologists, and
molecular biologists who employ classical and modern biophysical
technologies or wish to expand their expertise to include such
approaches. It will also interest the biomedical and biotechnology
communities for biophysical characterization of drug formulations
prior to FDA approval.
There has been no mechanistic explanation for evolutionary change consistent with phylogeny in the 150 years since the publication of 'Origins'. As a result, progress in the field of evolutionary biology has stagnated, relying on descriptive observations and genetic associations rather testable scientific measures. This book illuminates the need for a larger evolutionary-based platform for biology. Like physics and chemistry, biology needs a central theory in order to frame the questions that arise, the way hypotheses are tested, and how to interpret the data in the context of a continuum.The reduction of biology to its self-referential, self-organized properties provides the opportunity to recognize the continuum from the Singularity/Big Bang to Consciousness based on cell-cell communication for homeostasis.
The objective of the "Springer Handbook of Enzymes" is to provide in concise form data on enzymes sufficiently well characterized. Data sheets are arranged in their EC-Number sequence. The volumes are arranged according to enzyme classes. Considerable progress has been made in enzymology since the publication of the first edition (published as "Enzyme Handbook"): many enzymes are newly classified or reclassified. In the 2nd edition each entry is correlated with references and one or more source organisms. New datafields are created: "application" and "engineering" (for the properties of enzymes where the sequence has been changed). Altogether the amount of data has doubled so that the 2nd edition consists of 39 volumes plus synonym index. All newly classified enzymes are treated in the supplement volumes. This collection is an indispensable source of information for researchers in biochemistry, biotechnology, organic and analytical chemistry, and food sciences, as well as for medicinal applications. The supplement volumes contain all newly classified enzymes - about 100-150 per year.
The demand for traditional medicines, herbal health products, herbal pharmaceuticals, nutraceuticals, food supplements and herbal cosmetics etc. is increasing globally due to the growing recognition of these products as mainly non-toxic, having lesser side effects, better compatibility with physiological flora, and availability at affordable prices. In the last century, medical science has made incredible advances all over the globe. In spite of global reorganization and a very sound history of traditional uses, the promotion of traditional medicine faces a number of challenges around the globe, primarily in developed nations. Regulation and safety is the high concern for the promotion of traditional medicine. Quality issues and quality control, pharmacogivilane, scientific investigation and validation, intellectual property rights, and biopiracy are some key issues that restrain the advancement of traditional medicine around the globe. This book contains diverse and unique chapters, explaining in detail various subsections like phytomolecule, drug discovery and modern techniques, standardization and validation of traditional medicine, and medicinal plants, safety and regulatory issue of traditional medicine, pharmaceutical excipients from nature, plants for future. The contents of the book will be useful for the academicians, researchers and people working in the area of traditional medicine. |
![]() ![]() You may like...
Computational Intelligence in Data…
Vallidevi Krishnamurthy, Suresh Jaganathan, …
Hardcover
R2,640
Discovery Miles 26 400
|