![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Biochemistry
This volume examines a number of different proteases, a type of enzyme, that are required in order for the change to a biologically active mature protein to occur. The discussion of these various proteases is rarely undertaken in one volume and will serve as a great resource for scientists studying the group of proteases on signal peptide processing as well as those working on propeptide processing. These areas of research do not normally overlap, and yet they are each of common importance to the same cell processes.
Biomolecular Free Radical Toxicity: Causes and Prevention provides
a comprehensive overview of biomolecular injury. By discussing
recent research and providing interpretations of the available
data, this unique and timely book explores the causes of
biomolecular injury and the possible routes to its prevention.
Split into three sections, the book covers:
The development of proteomic analyses using advanced mass spectrometry techniques has revolutionized the way proteins are studied, namely, as individual molecules within a complex system. HIV-1 Proteomics: From Discovery to Clinical Application comprehensively covers protein analysis from the early classic experimental days to current state-of-the-art HIV-1 proteomics in a clear informative style that brings expert-level understanding to the novice. Discussion of important clinical applications and future directions for the field also make this an ideal read for the expert. After finishing this book, the reader will have a complete and functional understanding of protein analysis from traditional biochemistry to modern proteomics.
Fatty acids play an important role in the barrier function of skin and represent a major source of proinflammatory mediators such as prostaglandins, leukotrienes and other lipids in inflammatory skin disorders. This book combines the two major functions of fatty acids in skin biology. In the first part the biosynthesis of fatty acids in skin with its role in barrier function as well as the role of dietary fatty acids on skin cell function and in the treatment of inflammatory skin diseases is presented. The second part deals with skin as a source of proinflammatory eicosanoids, especially with the keratinocyte as a major cellular source. Metabolism of eicosanoids in skin, its role in psoriasis and atopic dermatitis as well as pharmacological inhibition of eicosanoid biosynthesis is reviewed. The book finishes with a chapter describing the methods used for quantification of fatty acids and derivatives in skin inflammation. Anyone interested in skin physiology would benefit from the overviews about the two sites of fatty acids' function in skin integrity and in skin inflammation.
This publication summarizes the current status of our understanding
of RNA, with particular emphasis on the chemistry of this key
biological molecule. The various RNAs covered are messenger RNA,
ribosomal RNA, transfer RNA and RNA enzymes (ribozymes). The
different chapters detail biophysical and chemical methods to
investigate RNA structure and function, the synthesis of native and
modified RNAs and the latest advances in our understanding of the
vast array of biological processes in which RNA is involved.
This volume and its companion, Volume 337, supplement Volume 310, . These volumes provide a contemporary sourcebook for virtually any kind of experimental approach involving biofilms. They cover bioengineering, molecular, genetic, microscopic, chemical, and physical methods.
This volume documents this unique family of cell surface proteins. Despite masquerading as intractable and difficult to clone and characterize, ENOX proteins have and continue to offer remarkable opportunities for research, commercial development and outside confirmation of therapeutic, diagnostic and new paradigms to help explain complex biological processes.
Man's use of enzymes dates back to the earliest times of civilization. Important human activities such as the production of certain types of foods and beverages, and the tanning of hides and skins to produce leather for garments, serendipitously took advantage of enzymes. Important advances in our understanding of the nature of enzymes and their action were made in the late 19th and early 20th centuries, seeding the explosive expansion from the 1950s and 60s onward to the present billion dollar enzyme industry. Recent developments in the fields of genetic engineering and protein chemistry are bringing ever more powerful means of analysis to bear on the study of enzyme structure and function that will undoubtedly lead to the rational modification of enzymes to match specific requirements and also the design of new enzymes with novel properties.
This volume, new to The Receptors series, focuses on several areas, including the birth, maturation, and structure of Chemokines; Neutrophil, Dendritic, and Lymphocyte trafficking; and Chemokine Receptors in diseases such as AIDs and lung cancer. In particular the book contains cutting-edge information ranging from basic molecular and cellular mechanisms to physiological and pathological roles of chemokines.
Highly experienced researchers describe in step-by-step detail methods that have proven most useful in delivering genes to mammalian cells. Volume 1: Nonviral Gene Transfer Techniques focuses on gene delivery by a variety of chemical and physical methods, including ultrasound, biolistics, peptides, PNA clamps, liposomes, microinjection, electroporation, particle bombardment, dendrimers, and hydrodynamics. An accompanying volume, Volume 2: Viral Gene Transfer Techniques, details procedures for delivering genes to cells in vitro and in vivo, including the use of lentiviral vectors.
Heat Shock Proteins and Plants provides the most up-to-date and concise reviews and progress on the role of heat shock proteins in plant biology, structure and function and is subdivided into chapters focused on Small Plant HSPs (Part I), Larger Plant HSPs (Part II) and HSPs for Therapeutic Gain (Part III). This book is written by eminent leaders and experts from around the world and is an important reference book and a must-read for undergraduate, postgraduate students and researchers in the fields of Agriculture, Botany, Crop Research, Plant Genetics and Biochemistry, Biotechnology, Drug Development and Pharmaceutical Sciences.
This volume describes chemical approaches to assess ion channel structure, function and pharmacology. Topics discussed include the use of engineered ionizable side chains to obtain information on permeation pathways and the local environment; the modification of engineered cysteine side chains, including cysteine scanning mutagenesis and the attachment of fluorescent probes and bio-reactive tethers; and the nascent use of genetic code expansion, evaluating its applications to ion channel and membrane proteins. This comprehensive text provides multifaceted perspectives on the great diversity of state-of-the-art methods which take advantage of the ever-expanding chemical toolbox to study ion channel biology. Capturing the contributions and innovations of renowned laboratory researchers in transmembrane protein study for the first time, this book is comprehensive in scope. It covers a wide array of experimental approaches: photochemistry, novel biological tools, and innovative spectroscopy, all combined with traditional techniques of electrophysiology and molecular biology. Novel Chemical Tools to Study Ion Channel Biology, part of the bestselling Advances in Experimental Medicine and Biology series is ideal for researchers and advanced students interested in biochemistry, biophysics, fluorometry, electrophysiology, and chemical biology. .
The papers in this volume are from the workshop on Protein
Flexibility and Folding held in Traverse City, Michigan from August
13 - 17, 2000. The purpose of the workshop was to bring together
diverse people interested in protein folding and flexibility from
theoretical, computational and experimental perspectives and to
encourage discussion on new approaches and challenges in the field.
The workshop was held in the Park Plaza Hotel with 43 participants,
including 24 invited speakers. The small size of the group made for
easy exchanges, and many of the presentations by the invited
speakers appear in this volume. There was also a very lively poster
session.
Regulated turnover of extracellular matrix (ECM) is an important component of tissue homeostasis. In recent years, the enzymes that participate in, and control ECM turnover have been the focus of research that touches on development, tissue remodeling, inflammation and disease. This volume in the Biology of Extracellular Matrix series provides a review of the known classes of proteases that degrade ECM both outside and inside the cell. The specific EMC proteases that are discussed include cathepsins, bacterial collagenases, matrix metalloproteinases, meprins, serine proteases, and elastases. The volume also discusses the domains responsible for specific biochemical characteristics of the proteases and the physical interactions that occur when the protease interacts with substrate. The topics covered in this volume provide an important context for understanding the role that matrix-degrading proteases play in normal tissue remodeling and in diseases such as cancer and lung disease. The series Biology of Extracellular Matrix is published in collaboration with the American Society for Matrix Biology.
Directed evolution comprises two distinct steps that are typically applied in an iterative fashion: (1) generating molecular diversity and (2) finding among the ensemble of mutant sequences those proteins that perform the desired fu- tion according to the specified criteria. In many ways, the second step is the most challenging. No matter how cleverly designed or diverse the starting library, without an effective screening strategy the ability to isolate useful clones is severely diminished. The best screens are (1) high throughput, to increase the likelihood that useful clones will be found; (2) sufficiently sen- tive (i. e. , good signal to noise) to allow the isolation of lower activity clones early in evolution; (3) sufficiently reproducible to allow one to find small improvements; (4) robust, which means that the signal afforded by active clones is not dependent on difficult-to-control environmental variables; and, most importantly, (5) sensitive to the desired function. Regarding this last point, almost anyone who has attempted a directed evolution experiment has learned firsthand the truth of the dictum "you get what you screen for. " The protocols in Directed Enzyme Evolution describe a series of detailed p- cedures of proven utility for directed evolution purposes. The volume begins with several selection strategies for enzyme evolution and continues with assay methods that can be used to screen enzyme libraries. Genetic selections offer the advantage that functional proteins can be isolated from very large libraries s- ply by growing a population of cells under selective conditions.
This book will provide latest insights in the functional potentials of ribonucleic acids in medine and the use of Spiegelmer and Spiegelzyme systems. It will also deal with a new type of delivery systems for cellular targeting.
This volume emphasizes the involvement of all facets of biology in the analysis of environmentally controlled movement responses. This includes biophysics, biochemistry, molecular biology and as an integral part of any approach to a closer understanding, physiology. The initial euphoria about molecular biology as the final solution for any problem has dwindled and the field agrees now that only the combined efforts of all facets of biology will at some day answer the question posed more than hundred years ago: "How can plants see?." One conclusion can be drawn from the current knowledge as summarized in this volume. The answer will most likely not be the same for all systems.
Biomass conversion research is a combination of basic science, applied science, and engineering testing and analysis. Conversion science includes the initial treatment (called pre-treatment) of the feedstock to render it more amenable to enzyme action, enzymatic saccharification, and finally product formation by microbiological or chemical processes. In Biomass Conversion: Methods and Protocols, expert researchers in the field detail methods which are now commonly used to study biomass conversion. These methods include Biomass Feedstocks and Cellulose, Plant Cell Wall Degrading Enzymes and Microorganisms, and Lignins and Hemicelluloses. Written in the highly successful Methods in Molecular Biology (TM) series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting informed, reproducible results in the laboratory.
This Volume features protocols for investigating the hydrocarbon- and lipid-specific activities of microbes. They include methods for studying chemotaxis, the colonisation of hydrocarbon surfaces, hydrocarbon uptake, respiration, nitrogen fixation, sulphate reduction, membrane stabilisation through cis-trans isomerisation of membrane fatty acids, and the production of biosurfactants and biopolymers in response to the presence of hydrocarbons. A protocol for studying the ability of microbes to control the concentration of hydrocarbons in their aqueous environment is also described, and phenotyping methods to reveal microbes' more general metabolic activities are presented. Several protocols for investigating acid production in connection with oil souring and biocorrosion by microbes in oil well, oil transportation and storage settings are presented. Lastly, protocols for measuring methanogenesis, as an example of microbial hydrocarbon production, are described.< Hydrocarbon and Lipid Microbiology ProtocolsThere are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
This book shows the various sandwich assays that are constructed from recognition molecules, such as antibodies, oligonucleotide sequences and aptamers, developed as a result of nano- and biotechnology advances. It consists of ten chapters presenting interesting examples of these assays, organized according to the type of analytic methods (colorimetric, fluorescence, electrochemical, etc.) and detected objects (protein, nucleic acid, small-molecule, ion, etc.). It also includes a chapter discussing the introduction of sandwich assays as biosensors for the detection of a range of targets. It is an interesting and useful resource for a wide readership in various fields of chemical science and nanotechnology.
The largest collection of articles on the three major gene
families, this work ranges from enzymology to molecular biology to
physiological implications. The three gene families are related in
that the enzymes catalyse the NAD(P) dependent oxidation or
reduction of carbonyl containing substrates. The substrates are
important in diverse areas such as alcoholism, diabetes and cancer
related problems as well as simple detoxification. The scope of the
chapters, contributed by leading international scientists, is wide
and covers gene regulation to enzyme mechanisms and protein
structure. This is the only publication dealing in such depth with
just three gene families. An important reference for researchers in
toxicology and molecular biology.
This book encompasses the exciting developments and challenges in the fast-moving and rapidly expanding research field of single-molecule kinetic analysis of cell signaling that promises to be one of the most significant and exciting areas of biological research for the foreseeable future. Cell signaling is carried out by complicated reaction networks of macromolecules, and single-molecule analyses has already demonstrated its power to unravel complex reaction dynamics in purified systems. To date, most of the published research in the field of single-molecule processes in cells, focus on the dynamic properties (translational movements of the centre of mass) of biological molecules. However, we hope that this book presents as many kinetic analyses of cell signaling as possible. Although single-molecule kinetic analysis of cellular systems is a relatively young field when compared with the analysis of single-molecule movements in cells, this type of analysis is highly important because it directly relates to the molecular functions that control cellular behavior and in the future, single-molecule kinetic analysis will be largely directed towards cellular systems. Thus, we hope that this book will be of interest to all those working in the fields of molecular and cell biology, as well as biophysics and biochemistry.
Exemplifying and illustrating recent exciting advances in PNA chemistry, the second edition of Peptide Nucleic Acids: Methods and Protocols serves as a vital complement to the first edition of the book. Since the discovery of peptide nucleic acids, many interesting new derivatives and analogues in terms of nucleic acid recognition specificity and affinity have emerged. Also, as this detailed volume presents, great ingenuity in exploiting the unique properties of PNAs for a wide variety of applications within drug discovery, medical diagnostics, chemical biology and nanotechnology has unfolded. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Peptide Nucleic Acids: Methods and Protocols, Second Edition serves as a source of useful specific methods and protocols as well as a source of inspiration for future developments. |
You may like...
May Martin, and Other Tales of the Green…
Daniel Pierce Thompson
Paperback
R571
Discovery Miles 5 710
|