![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Biochemistry
This volume describes high-throughput approaches to a series of robust, established methodologies in molecular genetic studies of population samples. Such developments have been essential not only to linkage and association studies of single-gene and complex traits in humans, animals and plants, but also to the characterisation of clone banks, for example in mapping of genomes. Chapters have been written by developers or highly experienced end-users concerned with a diverse array of biological applications. The book should appeal to any researcher for whom costs and throughput in their genetics laboratory have become an issue.
This volume supplements Volumes 63, 64, 87, and 249 of Methods in
Enzymology. These volumes provide a basic source for the
quantitative interpretation of enzyme rate data and the analysis of
enzyme catalysis. Among the major topics covered are Engergetic
Coupling in Enzymatic Reactions, Intermediates and Complexes in
Catalysis, Detection and Properties of Low Barrier Hydrogen Bonds,
Transition State Determination, and Inhibitors.
In Peptide Modifications to Increase Metabolic Stability and Activity, expert researchers in the field provide summarized methods for preparation, purification of modified peptides, and assessment of their biochemical activities. These methods and protocols include preparation of conformationally constrained peptides, modification of peptide bonds, introduction of nonproteinogenic amino acids, and alteration of peptides' physical and biological properties by modification of the amino acid side chains and/or terminal residues. With additional chapter that describes new experimental approach for the detection of exogenous peptides within living cells using peptides labeled with heavy isotopes and confocal Raman microscopy. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Peptide Modifications to Increase Metabolic Stability and Activity seeks to provide scientists with alternative approaches to peptide modification that many researchers may find applicable to their specific research requirements.
In an ever-increasing domain of activity Amino Acids Peptides and Proteins provides an annual compilation of the world's research effort into this important area of biological chemistry. Volume 30 provides a review of literature published during 1997. Comprising a comprehensive review of significant developments at this biology/chemistry interface each volume opens with an overview of amino acids and their applications. Work on peptides is reviewed over several chapters ranging from current trends in their synthesis and conformational and structural analysis to peptidomimetics and the discovery of peptide-related molecules in nature. The application of advanced techniques in structural elucidation is incorporated into all chapters whilst periodic chapters on metal complexes of amino acids, peptides and beta-lactams extend the scope of coverage. Efficient searching of specialist topics is facilitated by the sub-division of chapters into discrete subject areas allowing annual trends to be monitored. All researchers in the pharmaceutical and allied industries and at the biology/chemistry interface in academia will find this an indispensable reference source.
After a little more than 20 years since the original discovery of neuropeptide Y (NPY) by Tatemoto and colleagues, the field of NPY research has made remarkable progress and is coming of age.The present volume addresses all major topics in connection with NPY and related peptides by established leaders in their respective areas. Experienced NPY-aficionados will certainly find new and useful additional information in this volume and newcomers to the field will hopefully discover how much exciting research this still has to offer.
Antisense technology is the ability to manipulate gene expression
within mammalian cells providing powerful experimental approaches
for the study of gene function and gene regulation. For example,
methods that inhibit gene expression permit studies which probe the
normal function of a specific product within a cell. Such
methodology can be used in many disciplines such as pharmacology,
oncology, genetics, cell biology, developmental biology, molecular
biology, biochemistry, and neurosciences. This volume will be a
truly important tool in biomedical-oriented research.
This book focuses on host-pathogen interactions at the metabolic level. It explores the metabolic requirements of the infectious agents, the microbial metabolic pathways that are dedicated to circumvent host immune mechanisms as well as the molecular mechanisms by which pathogens hijack host cell metabolism for their own benefit. Finally, it provides insights on the possible clinical and immunotherapeutic applications, as well as on the available experimental and analytical methods. The contributions break new ground in understanding the metabolic crosstalk between host and pathogen.
For most of industrial applications, enzymes and cells have to be immobilized, via very simple and cost-effective protocols, in order to be re-used for very long periods of time. From this point of view, immobilization, simplicity and stabilization have to be strongly related concepts. The third edition of Immobilization of Enzymes and Cells expands upon and updates the previous editions with current, detailed protocols for immobilization. With new chapters on protocols for immobilization of enzymes and cells which may be useful to greatly improve the functional properties of enzymes and cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Immobilization of Enzymes and Cells, Third Edition demonstrates simple and efficient protocols for the preparation, characterization, and utilization of immobilized enzymes and cells.
This volume deals with "Microbial Production of L-Amino Acids" and presents five comprehensive, expert and actual review articles on the modern production of Amino Acids by application of biotechnologically optimized microorganisms. This includes not only the modern techniques of enzyme, metabolic and transport engineering but also sophisticated analytical methods like metabolic flux analysis and subsequent pathway modeling. A general review about industrial processes of Amino Acid production provides a comprehensive overview about recent strain development as well as fermentation technologies. It was our special interest to focus the other articles on the most important and best selling amino acids on the world market i.e. L-Glutamate, L-Lysine and L-Threonine. The authors of this special volume have contributed significantly to the progress of Amino Acid biotechnology in the last decades and earn our special gratitude and admiration for their expert review articles.
Antibodies tagged with fuorescent markers have been used in histochemistry for over 50 years. Although early applications were focused on the detection of microbial antigens in tissues, the use of immunocytochemical methods now has spread to include the det- tion of a wide array of antigens including proteins, carbohydrates, and lipids from virtually any organism. Today, immunohistochemistry is widely used to identify, in situ, various components of cells and tissues in both normal and pathological conditions. The method gains its strength from the extremely sensitive interaction of a specifc antibody with its antigen. For some scientifc areas, books have been published on applications of immu- cytochemical techniques specifc to that area. What distinguished Immunocytochemical Methods and Protocols from earlier books when it was frst published was its broad appeal to investigators across all disciplines, including those in both research and clinical settings. The methods and protocols p- sented in the frst edition were designed to be general in their application; the accompa- ing "Notes" provided the reader with invaluable assistance in adapting or troubleshooting the protocols. These strengths continued to hold true for the second edition and again for the third edition. Since the publication of the frst edition, the application of immuno- tochemical techniques in the clinical laboratory has continued to rise and this third edition provides methods that are applicable to basic research as well as to the clinical laboratory.
The aim of this book is to provide the researcher with important sample preparation strategies in a wide variety of analyte molecules, specimens, methods, and biological applications requiring mass spectrometric analysis as a detection end-point. In this volume we have compiled the contributions from several laboratories which are employing mass spectrometry for biological analysis. With the latest inventions and introduction of highly sophisticated mass spectrometry equipment sample preparation becomes an extremely important bottleneck of biomedical analysis. We have a goal of giving the reader several successful examples of sample preparation, development and optimization, leading to the success in analytical steps and proper conclusions made at the end of the day. This book is structured as a compilation of contributed chapters ranging from protocols to research articles and reviews. The main philosophy of this volume is that sample preparation methods have to be optimized and validated for every project, for every sample type and for every downstream analytical technique.
Protein-protein interactions (PPIs) are strongly predictive of functional relationships among proteins in virtually all processes that take place in the living cell. Therefore, the comprehensive exploration of interactome networks is one of the major goals in systems biology. The aim of Two Hybrid Technologies: Methods and Protocols is to provide a compendium of state-of-the art protocols for the investigation of binary PPIs with the classical yeast two-hybrid (Y2H) approach, Y2H variants and other in vivo methods for PPI mapping. Divided into two convenient sections, the first gives a survey of protocols that are currently employed for Y2H high-throughput screens by different expert labs in the field. Rather than detailing the principles of screening, which have been described previously, the focus is on different implementations of Y2H interactome mapping. The second section of the book considers innovative PPI detection methods that have the potential to emerge as alternative high-throughput methodologies. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Two Hybrid Technologies: Methods and Protocols supplies researchers with a comprehensive toolbox for the identification of biologically relevant protein interactions.
This volume represents a collection of contributions from the 6th International Conference on Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Related Diseases held in Boston from September 12-15, 1999. The mission of this meeting was to bring together senior and junior investigators to both announce and examine their recent advancements in cutting-edge research on the roles and actions of lipid mediators and their impact in human physiology and disease pathogenesis. The meeting focused on new concepts in these areas of interest to both clinicians and researchers. The program included several outstanding plenary lectures and presentations by leading experts in the fields of cancer and inflammation. In addition, the Boston meeting presented three Young Investigator awards, one in each of the major focus areas. The meeting was exciting and proved to be very memorable. The program was developed with an emphasis on recent advances in molecular and of lipid mediators relevant in cellular mechanisims involved in the formation and actions inflammation and cancer. Plenary lectures were presented by Prof. Bengt Sammuelsson (Karolinska Institute, Stockholm; 1982 Nobel Laureate in Physiology or Medicine) and Prof. E. 1. Corey (Harvard University; 1990 Nobel Laureate in Chemistry). Both of these plenary lectures were held on Day 1, which set an exciting tone for this meeting. Immediately following these plenary lectures, three simultaneous breakout sessions were held, one of inflammation, a second on cancer and synthesis of novel inhibitors, and a third on enzymes-lipoxygenases/cyclooxygenases and inhibitors.
When I received an invitation from Ron Landes (Landes Bioscience) to edit a book on CtBP family proteins, I was gratified to realize that the importance of these proteins has reached the level of deserving a 'separate' book. As the reader can see, there has been significant advancement in our understanding of the fijnctions of these proteins in the past ten years since CtBPl was cloned in our laboratory. Genetic and biochemical studies with Drosophila provided the critical evidence to show that dCtBP is a transcriptional CO repressor. Genetic studies with mutant mice have established that these proteins are essential for animal development. The CtBP family proteins are unique in several aspects. They were the first among proteins containing a metabolic enzyme fold to be implicated in transcriptional regulation. The vertebrate CtBPs exhibit distinct nuclear and cytosolic activities. The crystal struaures of CtBPl and molecular modeling studies have illuminated the mo- lecular basis of its dual activity and the interaction with target peptides. The organization of the vertebrate CtBP2 gene has provided a novel example of genomic consolidation indicating how a single gene could code for two di- verse proteins. I believe that this book will be a valuable reference source for new researchers to understand more about the CtBP family proteins and their role in growth, development and oncogenesis.
This text examines in detail mathematical and physical modeling, computational methods and systems for obtaining and analyzing biological structures, using pioneering research cases as examples. As such, it emphasizes programming and problem-solving skills. It provides information on structure bioinformatics at various levels, with individual chapters covering introductory to advanced aspects, from fundamental methods and guidelines on acquiring and analyzing genomics and proteomics sequences, the structures of protein, DNA and RNA, to the basics of physical simulations and methods for conformation searches. This book will be of immense value to researchers and students in the fields of bioinformatics, computational biology and chemistry. Dr. Dongqing Wei is a Professor at the Department of Bioinformatics and Biostatistics, College of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, China. His research interest is in the general area of structural bioinformatics.
The objective of the Springer Handbook of Enzymes is to provide in concise form data on enzymes that have been sufficiently well characterized. Data sheets are arranged in their EC-Number sequence. Usually each volume comprises one enzyme class, although sometimes the enzyme classes have to be divided into several volumes. Considerable progress has been made in enzymology since the publication of the first edition (published as "Enzyme Handbook"), and now many enzymes are newly classified or reclassified. In the 2nd edition each entry is correlated with references and one or more source organisms. New datafields are created, e.g., "application" and "engineering" (for the properties of enzymes where the sequence has been changed). Altogether the amount of data has doubled so that the 2nd edition will consist of approximately 25 volumes. This collection is an indispensable source of information for biochemists, biotechologists, organic and analytical chemists, and food scientist.
One of the challenges faced by every cell as well as by whole organisms is to maintain appropriate concentrations of essential nutrient metals while excluding nonessential toxic metals. Toward that end, all organisms have developed mechanisms for metal homeostasis and detoxification to maintain metal levels within physiological limits. This book brings together current knowledge of the molecular basis of metal homeostasis and detoxification in various eukaryotic model systems, including yeasts, plants, and mammals. It focuses on the cellular systems controlling metal transport, intracellular distribution, and immobilization as well as on systems regulating metal-dependent transcription. In addition to environmental aspects (including phytoremediation), the book treats the pathophysiology of metal deficiency and overload in relation to disease.
Reviews of Environmental Contamination and Toxicology attempts to provide concise, critical reviews of timely advances, philosophy and significant areas of accomplished or needed endeavor in the total field of xenobiotics, in any segment of the environment, as well as toxicological implications.
All forms of life depend on a variety of heavy metal ions. Nearly one-third of all gene products require a metal ion for proper folding or function. However, even metals generally regarded as non-poisonous are toxic at higher concentrations, including the essential ones. Thus, sensitive regulation of metal uptake, storage, allocation and detoxification is needed to maintain cellular homeostasis of heavy metal ions. Molecular Microbiology of Heavy Metals includes chapters on allocation of metals in cells, metal transporter, storage and metalloregulatory proteins, cellular responses to metal ion stress, transcription of genes involved in metal ion homeostasis, uptake of essential metals, metal efflux and other detoxification mechanisms. Also discussed are metal bioreporters for the nanomolar range of concentration and tools to address the metallome. Chapters in the second part cover specific metals such as Fe, Mn, Cu, Ni, Co, Zn and Mo as key nutrient elements and Ag, As, Cd, Hg and Cr as toxic elements.
In this book leading researchers in the field discuss the state-of-the-art of many aspects of SAPK signaling in various systems from yeast to mammals. These include various chapters on regulatory mechanisms as well as the contribution of the SAPK signaling pathways to processes such as gene expression, metabolism, cell cycle regulation, immune responses and tumorigenesis. Written by international experts, the book will appeal to cell biologists and biochemists.
This book covers a wide range of state-of-the-art methodologies and detailed protocols currently used to study the actions that lipid-activated nuclear receptors and their co-regulators have in tissues and immune cell types considered classic metabolic "powerhouses". This includes the liver, adipose tissue, and monocytes/macrophages present in these and other metabolic tissues. While the main focus is on the oxysterol receptor or Liver X Receptor (LXR), the majority of the methods described can be easily applied to multiple nuclear receptors, as well as to other tissues or cell types. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Lipid-Activated Nuclear Receptors: Methods and Protocols serves as an ideal guide for researchers pursuing the vital study of nuclear receptor biology and beyond.
In the future' the decade of the 1990s will likely be viewed as a Golden Age for retinoid research. There have been unprecedented research gains in the understanding of retinoid actions and physiology; since the retinoid nuclear receptors were first identified and the importance of retinoic acid in develop mental processes was first broadly recognized in the late 1980s. Between then and now, our knowledge of retinoid action has evolved from one of a near complete lack of understanding of how retinoids act within cells to one of sophisticated understanding of the molecular processes through which retinoids modulate transcription. In this volume, we have tried to provide a comprehensive update of the present understanding of retinoid actions, with an emphasis on re cent advances. The initial chapters of the volume, or Section A, focus on the physicochemical properties and metabolism of naturally occurring retinoids: - N OY provides an uncommonly encountered view of retinoid effects from the perspective of the physiochemical properties of retinoids. - V AKIANI and BUCK lend a perspective on the biological occurrence and actions of retro- and anhydro-retinoids. Section B considers both the retinoid nuclear receptors and their mechanisms of action as well as synthetic retinoids that have been used exper imentally to provide mechanistic insights into receptor actions and have potential therapeutic use for treating disease: - PIEDRAFITA and PFAHL provide a comprehensive review of retinoid nuclear receptor biochemistry and molecular biology.
This book puts hydrogen sulfide in context with other gaseous mediators such as nitric oxide and carbon monoxide, reviews the available mechanisms for its biosynthesis and describes its physiological and pathophysiological roles in a wide variety of disease states. Hydrogen sulfide has recently been discovered to be a naturally occurring gaseous mediator in the body. Over a relatively short period of time this evanescent gas has been revealed to play key roles in a range of physiological processes including control of blood vessel caliber and hence blood pressure and in the regulation of nerve function both in the brain and the periphery. Disorders concerning the biosynthesis or activity of hydrogen sulfide may also predispose the body to disease states such as inflammation, cardiovascular and neurological disorders. Interest in this novel gas has been high in recent years and many research groups worldwide have described its individual biological effects. Moreover, medicinal chemists are beginning to synthesize novel organic molecules that release this gas at defined rates with a view to exploiting these new compounds for therapeutic benefit.
The proposal of the School was made in 1998 to three institutions, which responded enthusiastically: The Abdus Salam International Centre for Theoretical Physics (ICTP), its main co-sponsor, the International Centre for Genetic Engineering and Biotechnology, both in Trieste, Italy, and the Chancellor's Office, Universidad Simon Bolfvar (USB). The secretarial and logistic support was provided in Trieste by the ICTP and in Caracas by USB and the IDEA Convention Center. In addition the event was generously supported by the following institutes, agencies, foundations and academies: NASA Headquarters, European Space Agency, TALVEN Programme, (Delegacion Permanente de Venezuela ante la UNESCO), The SETI Institute, Centro Latinoamericano .de Ffsica, The Third World Academy of Sciences, Academia de Ciencias Ffsicas, Matematicas y Naturales, Red Latinoamericana de Biologfa, The Planetary Society, The Latin American Academy of Sciences (Fondo ACAL), Alberto Vollmer Foundation, Inc, Fundacion J. Oro, Associated to the Catalonian Research Foundation, Red Latinoamericana de Astronomfa and Colegio Emil Friedman. A total of 36 lectures were delivered by 20 lecturers, of which 14 were from the following countries: Argentina, Mexico, Italy, Spain and the USA. Six lecturers were from the host country. In addition there were 5 chairpersons from the host country that were not participants; two participants acted as chairpersons (Pedro Benitez and Tomas Revilla). |
You may like...
Membranes in Pulmonary Vascular Disease…
Patrick Belvitch, Steven Dudek
Hardcover
R4,414
Discovery Miles 44 140
Cholesterol - From Chemistry and…
Anna N. Bukiya, Alex M. Dopico
Paperback
R3,645
Discovery Miles 36 450
The Chemical Dialogue Between Plants and…
Vivek Sharma, Richa Salwan, …
Paperback
R3,943
Discovery Miles 39 430
Toxicity of Nanoparticles in Plants - An…
Vishnu D. Rajput, Tatiana Minkina, …
Paperback
R3,925
Discovery Miles 39 250
The Human Mitochondrial Genome - From…
Giuseppe Gasparre, Anna Maria Porcelli
Paperback
R3,731
Discovery Miles 37 310
Enzymatic Plastic Degradation, Volume…
Gert Weber, Uwe T. Bornscheuer, …
Hardcover
R4,322
Discovery Miles 43 220
|