![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Biochemistry
The ability of polypeptides to form alternatively folded, polymeric
structures such as amyloids and related aggregates is being
increasingly recognized as a major new frontier in protein
research. This new volume of Methods in Enzymology along with Part
C (volume 413) on Amyloid, Prions and other Protein Aggregates
continue in the tradition of the first volume (309) in containing
detailed protocols and methodological insights, provided by leaders
in the field, into the latest methods for investigating the
structures, mechanisms of formation, and biological activities of
this important class of protein assemblies.
Population genomics is a recently emerged discipline, which aims at understanding how evolutionary processes influence genetic variation across genomes. Today, in the era of cheaper next-generation sequencing, it is no longer as daunting to obtain whole genome data for any species of interest and population genomics is now conceivable in a wide range of fields, from medicine and pharmacology to ecology and evolutionary biology. However, because of the lack of reference genome and of enough "a priori" data on the polymorphism, population genomics analyses of populations will still involve higher constraints for researchers working on non-model organisms, as regards the choice of the genotyping/sequencing technique or that of the analysis methods. Therefore, "Data Production and Analysis in Population Genomics" purposely puts emphasis on protocols and methods that are applicable to species where genomic resources are still scarce. It is divided into three convenient sections, each one tackling one of the main challenges facing scientists setting up a population genomics study. The first section helps devising a sampling and/or experimental design suitable to address the biological question of interest. The second section addresses how to implement the best genotyping or sequencing method to obtain the required data given the time and cost constraints as well as the other genetic resources already available, Finally, the last section is about making the most of the (generally huge) dataset produced by using appropriate analysis methods in order to reach a biologically relevant conclusion. Written in the successful "Methods in Molecular Biology " series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, advice on methodology and implementation, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, "Data Production and Analysis in Population Genomics" serves a wide readership by providing guidelines to help choose and implement the best experimental or analytical strategy for a given purpose.
This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
Fluorescent proteins are intimately connected to research in the life sciences. Tagging of gene products with fluorescent proteins has revolutionized all areas of biosciences, ranging from fundamental biochemistry to clinical oncology, to environmental research. The discovery of the Green Fluorescent Protein, its first, seminal application and the ingenious development of a broad palette of fluorescence proteins of other colours, was consequently recognised with the Nobel Prize for Chemistry in 2008. "Fluorescent Proteins I" is devoted to the basic photophysical and photochemical aspects of fluorescent protein technology. Experienced experts highlight colour tuning, the exploration of switching phenomena and respective methods for their investigation. The book provides a thorough understanding of primary molecular processes allowing the design of fluorescent proteins for specific applications.
In the past decade, there has been an explosion of progress in understanding the roles of carbohydrates in biological systems. This explosive progress was made with the efforts in determining the roles of carbohydrates in immunology, neurobiology and many other disciplines, examining each unique system and employing new technology. This volume represents the second of three in the Methods in Enzymology series, including Glycobiology (vol. 415) and Glycomics (vol. 416), dedicated to disseminating information on methods in determining the biological roles of carbohydrates. These books are designed to provide an introduction of new methods to a large variety of readers who would like to participate in and contribute to the advancement of glycobiology. The methods covered include structural analysis of carbohydrates, biological and chemical synthesis of carbohydrates, expression and determination of ligands for carbohydrate-binding proteins, gene expression profiling including micro array, and generation of gene knockout mice and their phenotype analyses.
Plants play a key role in purifying the biosphere of the toxic effects of industrial activity. This book shows how systematic application of the results of investigations into the metabolism of xenobiotics (foreign, often toxic substances) in plants could make a vastly increased contribution to planetary well-being. Deep physiological knowledge gained from an accumulation of experimental data enables the great differences between the detoxifying abilities of different plants for compounds of different chemical nature to be optimally exploited. Hence planting could be far more systematically adapted to actual environmental needs than is actually the case at present. The book could form the basis of specialist courses in universities and polytechnics devoted to environmental management, and advanced courses in plant physiology and biochemistry, for botany and integrative biology students. Fundamental plant physiology and biochemistry from the molecular level to whole plants and ecosystems are interwoven in a powerful and natural way, making this a unique contribution to the field.
In the past decade, there has been an explosion of progress in understanding the roles of carbohydrates in biological systems. This explosive progress was made with the efforts in determining the roles of carbohydrates in immunology, neurobiology and many other disciplines, examining each unique system and employing new technology. This volume represents the first of three in the Methods in Enzymology series, including Glycomics (vol. 416) and Functional Glycomics (vol. 417), dedicated to disseminating information on methods in determining the biological roles of carbohydrates. These books are designed to provide an introduction of new methods to a large variety of readers who would like to participate in and contribute to the advancement of glycobiology. The methods covered include structural analysis of carbohydrates, biological and chemical synthesis of carbohydrates, expression and determination of ligands for carbohydrate-binding proteins, gene expression profiling including micro array, and generation of gene knockout mice and their phenotype analyses.
The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with more than 300 volumes (all of them still in print), the series contains much material still relevant today-truly an essential publication for researchers in all fields of life sciences.
This book focuses on an "outside the box" notion by utilizing the powerful applications of next-generation sequencing (NGS) technologies in the interface of chemistry and biology. In personalized medicine, developing small molecules targeting a specific genomic sequence is an attractive goal. N-methylpyrrole (P)-N-methylimidazole (I) polyamides (PIPs) are a class of small molecule that can bind to the DNA minor groove. First, a cost-effective NGS (ion torrent platform)-based Bind-n-Seq was developed to identify the binding specificity of PIP conjugates in a randomized DNA library. Their biological influences rely primarily on selective DNA binding affinity, so it is important to analyze their genome-wide binding preferences. However, it is demanding to enrich specifically the small-molecule-bound DNA without chemical cross-linking or covalent binding in chromatinized genomes. Herein is described a method that was developed using high-throughput sequencing to map the differential binding sites and relative enriched regions of non-cross-linked SAHA-PIPs throughout the complex human genome. SAHA-PIPs binding motifs were identified and the genome-level mapping of SAHA-PIPs-enriched regions provided evidence for the differential activation of the gene network. A method using high-throughput sequencing to map the binding sites and relative enriched regions of alkylating PIP throughout the human genome was also developed. The genome-level mapping of alkylating the PIP-enriched region and the binding sites on the human genome identifies significant genomic targets of breast cancer. It is anticipated that this pioneering low-cost, high through-put investigation at the sequence-specific level will be helpful in understanding the binding specificity of various DNA-binding small molecules, which in turn will be beneficial for the development of small-molecule-based drugs targeting a genome-level sequence.
In this fast moving field the main goal of this volume is to provide up-to-date information on the molecular and functional properties and pharmacology of mammalian TRP channels. Leading experts in the field describe properties of a single TRP protein/channel or portray more general principles of TRP function and important pathological situations linked to mutations of TRP genes or their altered expression. Thereby this volume on Transient Receptor Potential (TRP) Channels provides valuable information for readers with different expectations and backgrounds, for those who are approaching this field of research as well as for those wanting to make a trip to TRPs."
Exploring the 2-D gel mapping field, the chapters in this book are separated into four different categories: Part I talks about 2-D maps reproducibility and maps modeling; Part II describes the image analysis tools that provide spot volume datasets; Part III is about the statistical methods applied to spot volume datasets to identify candidate biomarkers; and Part IV discusses differential analysis from direct image analysis tools. 2-D PAGE Map Analysis: Methods and Protocols provides a unique approach to 2-D gel mapping, in that it helps users avoid drawbacks due to ignorance of the basic theoretical mechanisms underlying the technique, including data handling and proper tools for spot analysis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, 2-D PAGE Map Analysis: Methods and Protocols, is a useful resource for any scientist or researcher, with a mathematical background, who is interested in 2-D gel mapping.
Themulticomponentnatureofbiologicalmembranesandtheirintra- andextracel- lar interactions make direct investigations on the membrane structure and processes nearly impossible. Clearly, a better understanding of the membrane properties and the mechanisms determining membrane protein functions is crucial to the imp- mentation of biosensors, bioreactors and novel platforms for medical therapy. For this reason, the interest in model systems suitable for the construction and study of complex lipid/protein membrane architectures has increased steadily over the years. The classical portfolio of model membranes used for biophysical and - terfacial studies of lipid (bi)layers and lipid/protein composites includes Langmuir monolayers assembled at the water/air interface, (uni- and multi-lamellar) vesicles in bulk (liposomal) dispersion, bimolecular lipid membranes (BLMs), and various types of solid-supported membranes. All these have speci?c advantages but also suffer from serious drawbacksthat limit their technical applications. Polymer m- branes comprised of entirely synthetic or hybrid (synthetic polymer/biopolymer) block copolymersappeared to be an attractive alternative to the lipid-based models. Generally, the synthetic block copolymer membranes are thicker and more stable and the versatility of polymer chemistry allows the adoption of relevant properties for a wide range of applications. This volume provides a vast overview of the physico-chemical and synthetic - pectsofarti?cial membranes. Numerousmembranemodelsaredescribed,including their properties(i. e. swelling, drying,lateral mobility,stability, electrical conduct- ity, etc. ), advantages, and drawbacks. The potential applications of these models are discussed and supported by real examples. Chapter 1 summarizesmethodsfor the stabilizationof arti?cial lipid membranes.
This series is world-renowned as the leading compilation of current
reviews of this vast field. Internationally acclaimed for more than
forty years, The Alkaloids: Chemistry and Biology, founded by the
late Professor R.H.F. Manske, continues to provide outstanding
coverage of this rapidly expanding field. Each volume provides,
through its distinguished authors, up-to-date and detailed coverage
of particular classes or sources of alkaloids.
The Ras superfamily (>150 human members) encompasses Ras GTPases
involved in cell proliferation, Rho GTPases involved in regulating
the cytoskeleton, Rab GTPases involved in membrane targeting/fusion
and a group of GTPases including Sar1, Arf, Arl and dynamin
involved in vesicle budding/fission. These GTPases act as molecular
switches and their activities are controlled by a large number of
regulatory molecules that affect either GTP loading (guanine
nucleotide exchange factors or GEFs) or GTP hydrolysis (GTPase
activating proteins or GAPs). In their active state, they interact
with a continually increasing, functionally complex array of
downstream effectors.
Springer Handbook of Enzymes provides data on enzymes sufficiently well characterized. It offers concise and complete descriptions of some 5,000 enzymes and their application areas. Data sheets are arranged in their EC-Number sequence and the volumes themselves are arranged according to enzyme classes. This new, second edition reflects considerable progress in enzymology: many enzymes are newly classified or reclassified. Each entry is correlated with references and one or more source organisms. New datafields are created: application and engineering (for the properties of enzymes where the sequence has been changed). The total amount of material contained in the Handbook has more than doubled so that the complete second edition consists of 39 volumes as well as a Synonym Index. In addition, starting in 2009, all newly classified enzymes are treated in Supplement Volumes. Springer Handbook of Enzymes is an ideal source of information for researchers in biochemistry, biotechnology, organic and analytical chemistry, and food sciences, as well as for medicinal applications.
In this book, seven chapters describe studies aimed at understanding and exploiting the key features of such molecular RNA and DNA devices. In the first section of the book, four chapters are devoted to artificial nucleic acid switches and sensors. These chapters introduce the concept of allosteric ribozymes as molecular switches and sensors; describe nucleic acid enzymes that are switched by oligonucleotides and other nucleic acid enzymes that are switched by proteins; and illustrate how switching elements can be integrated rationally into fluorescently signaling molecular sensors made out of nucleic acids. In the second section of the book, three chapters show that nature has been as crafty a molecular-scale engineer as any modern scientist via evolution of natural nucleic acid switches and sensors. RNAs have been found whose activities are modulated either by proteins or by small-molecule metabolites, and both kinds of system are described. Finally, the notion of exploiting naturally occurring RNA switches for drug development is discussed.
Due to their rare combination of high chemical stability, exceptional optical and electrical properties, high surface-to-volume ratio, and high aspect ratio, carbon nanotubes (CNTs) have made an enormous impact on materials science, molecular biology, biomedicine, and bioanalytical chemistry. Carbon Nanotubes: Methods and Protocols provides reliable, consistent protocols on the application of CNTs in molecular biology-related fields. These are of vital importance, as the commercially available CNTs differ in purity, agglomeration state, as well as length and diameter distribution, all of which have a profound influence on the dispersability and surface properties of the tubes. The volume contains detailed sections on functionalization, toxicity, trafficking, scaffolds, and biosensors, provided by expert researchers from various fields. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Carbon Nanotubes: Methods and Protocols serves to contribute to the achievement of common standards and helps researchers to avoid discrepancies in future biology-related CNT studies.
This book covers the most recent developments in the analysis of allosteric enzymes and provides a logical introduction to the limits for enzyme function as dictated by the factors that are limits for life. The book presents a complete description of all the mechanisms used for changing enzyme activity. It is extensively illustrated to clarify kinetic and regulatory properties. Eight enzymes are used as model systems after extensive study of their mechanisms. Wherever possible, the human form of the enzyme is used to illustrate the regulatory features.
This detailed book provides technical approaches to tackle a variety of questions related to intracellular lipid transport in order to improve our understanding at different scales of how lipids are accurately displaced between organelles, across long distances or at membrane contact sites, or within cellular membranes. The volume begins with methodologies to measure the movement of varied lipid species between or in organelle membranes, inside eukaryotic cells, including plant cells, or in bacteria, and continues in vitro or in silico approaches aiming to define, more from a biochemical and structural standpoints, how lipid transfer proteins (LTPs) or flippases/scramblases precisely function. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Intracellular Lipid Transport: Methods and Protocols serves as an ideal guide for researchers seeking to shed light on diverse aspects of this critical and often elusive cellular process.
The centromere is a chromosomal region that enables the accurate segregation of chromosomes during mitosis and meiosis. It holds sister chromatids together, and through its centromere DNA-protein complex known as the kinetochore binds spindle microtubules to bring about accurate chromosome movements. Despite this conserved function, centromeres exhibit dramatic difference in structure, size, and complexity. Extensive studies on centromeric DNA revealed its rapid evolution resulting often in significant difference even among closely related species. Such a plasticity of centromeric DNA could be explained by epigenetic c- trol of centromere function, which does not depend absolutely on primary DNA sequence. According to epigenetic centromere concept, which is thoroughly d- cussed by Tanya Panchenko and Ben Black in Chap. 1 of this book, centromere activation or inactivation might be caused by modifications of chromatin. Such acquired chromatin epigenetic modifications are then inherited from one cell di- sion to the next. Concerning centromere-specific chromatin modification, it is now evident that all centromeres contain a centromere specific histone H3 variant, CenH3, which replaces histone H3 in centromeric nucleosomes and provides a structural basis that epigenetically defines centromere and differentiates it from the surrounding chromatin. Recent insights into the CenH3 presented in this chapter add important mechanistic understanding of how centromere identity is initially established and subsequently maintained in every cell cycle.
Contents E.I. Christensen and R. Nielsen: Role of Megalin and Cubilin in Renal Physiology and Pathophysiology G. Zifarelli and M. Pusch: CLC Chloride Channels and Transporters: A Biophysical and Physiological Perspective S.F.J. van de Graaf, R.J.M. Bindels and J.G.J. Hoenderop: Physiology of Epithelial Ca2 and Mg2+ Transport
The aim of this series is to provide authoritative reviews in the
rapidly expanding area of bioinorganic chemistry. The series will
present "state of the art" reviews covering the whole field of
bioinorganic chemistry.
Volume 72 addresses the role of peptide backbone solvation in the
energetics of protein folding. Particular attention is focused on
modeling and computation. This volume will be of particular
interest to biophysicists and structural biologists.
Ubiquitin and Protein Degradation, Part B will cover chemical
biology, ubiquitin derivatives and ubiquitin-like proteins,
deubiquitinating enzymes, proteomics as well as techniques to
monitor protein degradation. The chapters are highly methodological
and focus on application of techniques. |
You may like...
Cholesterol - From Chemistry and…
Anna N. Bukiya, Alex M. Dopico
Paperback
R3,645
Discovery Miles 36 450
The Chemical Dialogue Between Plants and…
Vivek Sharma, Richa Salwan, …
Paperback
R3,943
Discovery Miles 39 430
|