![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Pre-clinical medicine: basic sciences > Physiology > Biomechanics, human kinetics
Synergy dicusses a general problem in biology: The lack of an
adequate language for formulating biologically specific problems.
Written for an inquisitive reader who is not necessarily a
professional in the area of movement studies, this book describes
the recent progress in the control and coordination of human
movement.
In Functional Anatomy of the Pelvis and the Sacroiliac Joint author and respected bodywork specialist John Gibbons looks at one of the most important areas of the body: the pelvis and the sacroiliac joint. He takes readers on a fascinating journey of enlightenment, teaching us to recognize pain and dysfunctional patterns that arise from the pelvic girdle. Gibbons addresses key issues such as: * The walking/gait cycle and its relationship to the pelvis * Leg length discrepancy and its relationship to the kinetic chain and the pelvis * The laws of spinal mechanics * The relationship of the hip joint, gluteal muscles, lumbar spine to the pelvis * Sacroiliac joint screening In addition, he provides step-by-step techniques to identify and correct a number of impaired patterns as well as functional exercises for the pelvis that promote recovery.
Bioengineering is a rapidly expanding interdisciplinary field that encompasses application engineering techniques in the field of mechanical engineering, electrical, electronics and instrumentation engineering, and computer science and engineering to solve the problems of the biological world. With the advent to digital computers and rapidly developing computational techniques, computer simulations are widely used as a predictive tool to supplement the experimental techniques in engineering and technology. Computational biomechanics is a field where the movements biological systems are assessed in the light of computer algorithms describing solid and fluid mechanical principles. This book outlines recent developments in the field of computational biomechanics. It presents a series of computational techniques that are the backbone of the field that includes finite element analysis, multi-scale modelling, fluid-solid interaction, mesh-less techniques and topological optimization. It also presents a series of case studies highlighting applications of these techniques in different biological system and different case studies detailing the application of the principles described earlier and the outcomes. This book gives an overview of the current trends and future directions of research and development in the field of computational biomechanics. Overall, this book gives insight into the current trends of application of intelligent computational techniques used to analyse a multitude of phenomena the field of biomechanics. It elaborates a series of sophisticated techniques used for computer simulation in both solid mechanics, fluid mechanics and fluid-solid interface across different domain of biological world and across various dimensional scales along with relevant case studies. The book elucidates how human locomotion to bacterial swimming, blood flow to sports science, these wide range of phenomena can be analyzed using computational methods to understand their inherent mechanisms of work and predict the behavior of the system. The target audience of the book will be post-graduate students and researchers in the field of Biomedical Engineering. Also industry professionals in biomedical engineering and allied disciplines including but not limited to kinesiologists and clinicians, as well as, computer engineers and applied mathematicians working in algorithm development in biomechanics.
This book is suitable for anyone interested in training with the use of science. Training has to be science-based and science is the only way forward, thus the book title indicates Applied Physiology of Exercise. Any training can be answered with physiological rationale. If it cannot be answered, people are moving away from specific intelligent training and into erroneous combination high-load training (for example, combining aerobic and anaerobic interval training in a single training session) that may not elicit a higher percentage of physiological adaptations but may induce injuries as the body is not conditioned properly. Combination high-level training may be introduced at a later stage once an individual goes through specific conditioning following a general conditioning of building the 'base' or 'foundation' period for at least six months. Factual training with science takes time to attain superior performance without performance-enhancing drugs or supplements such as growth hormones and testosterone. Gathering the 'right' knowledge is important and hopefully readers will be better equipped after reading this book. There are questions in each chapter to enhance learning and comprehension. It requires readers to think, rationalize, answer, and apply the facts to training or weight loss programs. These questions aim to ignite the critical component of learning as readers critique and re-analyze their training program. Even though each training could be different with everyone holding on to a different training philosophy, facts through science are universal for all.
Biomechanics of Tendons and Ligaments: Tissue Reconstruction looks at the structure and function of tendons and ligaments. Biological and synthetic biomaterials for their reconstruction and regeneration are reviewed, and their biomechanical performance is discussed. Regeneration tendons and ligaments are soft connective tissues which are essential for the biomechanical function of the skeletal system. These tissues are often prone to injuries which can range from repetition and overuse, to tears and ruptures. Understanding the biomechanical properties of ligaments and tendons is essential for their repair and regeneration.
Measurement and Evaluation in Physical Activity Applications offers the most accessible, student-friendly introduction to the principles and practice of measurement in physical activity available. Fully revised and updated, the second edition provides students with a clear guide to the obstacles to good measurement, and how to apply the principles of good measurement to a range of physical activity disciplines. Spanning applications in exercise science, sports performance, physical education, sports coaching, athletic training, and physical activity and health, the book also includes chapters on the key principles underlying good measurement practice-validity, reliability, and objectivity-as well as an introduction to using statistics and qualitative measurement. Structured to reflect single-semester classes, and involving students at every stage through its rich pedagogy and accessibility, this is a crucial resource for introducing students to the principles of best practice in measurement and evaluation. It is the ideal learning aid for any students studying measurement, evaluation, or assessment in kinesiology, exercise science, sports coaching, physical education, athletic training, and health and fitness.
This book provides a unique and succinct account of the history of health and fitness, responding to the growing recognition of physicians, policy makers and the general public that exercise is the most potent form of medicine available to humankind. Individual chapters present information extending from the earliest reaches of human history to the present day, arranged in the form of 30 thematic essays covering topics from the supposed idyll of the hunter-gatherer lifestyle and its posited health benefits to the evolution of health professionals and the possible contribution of the Olympic movement to health and fitness in our current society. Learning objectives are set for each topic, and although technical language is avoided as far as possible, a thorough glossary explains any specialized terms that are introduced in each chapter. The critical thinking of the reader is stimulated by a range of questions arising from the text context, and each chapter concludes with a brief discussion of some of the more important implications for public policies on health and fitness today and into the future. The material will be of particular interest to graduate and undergraduate students in public health, health promotion, health policy, kinesiology, physical education, but will be of interest also to many studying medicine, history and sociology.
This book presents recent research addressing the effects of different types of compression clothing on sport performance and recovery after exercise. It is also the first book that summarizes the effects of compression clothing on all main motor abilities in the context of various sports, offering a wealth of practical guidelines on how to optimize performance and recovery with the help of compression clothing. The book examines the effects of this clothing on physiological, psychological and biomechanical parameters including endurance, speed, strength, power, and motor control. It explains the basic principles involved in the reasonable application of compression garments in connection with different kinds of exercise, and describes the essential mechanisms of how compression garments work in a reader-friendly format that addresses the needs of researchers, athletes and coaches alike.
The goal of this book is to close the gap between high technology and accessibility for people having lost their independence due to the loss of physical and/or cognitive capabilities. Robots and mechatronic devices bring the opportunity to improve the autonomy of disabled people and facilitate their social and professional integration by assisting them to perform daily living tasks. Technical topics of interest include, but are not limited to: Communication and learning applications in SCI an CP, Interface and Internet-based designs, Issues in human-machine interaction, Personal robotics, Hardware and control, Evaluation methods, Clinical experience, Orthotics and prosthetics, Robotics for older adults, Service robotics, Movement physiology and motor control.
The book presents a state-of-the-art overview of biomechanical and mechanobiological modeling and simulation of soft biological tissues. Seven well-known scientists working in that particular field discuss topics such as biomolecules, networks and cells as well as failure, multi-scale, agent-based, bio-chemo-mechanical and finite element models appropriate for computational analysis. Applications include arteries, the heart, vascular stents and valve implants as well as adipose, brain, collagenous and engineered tissues. The mechanics of the whole cell and sub-cellular components as well as the extracellular matrix structure and mechanotransduction are described. In particular, the formation and remodeling of stress fibers, cytoskeletal contractility, cell adhesion and the mechanical regulation of fibroblast migration in healing myocardial infarcts are discussed. The essential ingredients of continuum mechanics are provided. Constitutive models of fiber-reinforced materials with an emphasis on arterial walls and the myocardium are discussed and the important influence of residual stresses on material response emphasized. The mechanics and function of the heart, the brain and adipose tissues are discussed as well. Particular attention is focused on microstructural and multi-scale modeling, finite element implementation and simulation of cells and tissues.
This edited volume collects the research results presented at the 14th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, Tel Aviv, Israel, 2016. The topical focus includes, but is not limited to, cardiovascular fluid dynamics, computer modeling of tissue engineering, skin and spine biomechanics, as well as biomedical image analysis and processing. The target audience primarily comprises research experts in the field of bioengineering, but the book may also be beneficial for graduate students alike.
This book addresses two fundamental issues of motor control for both humans and robots: kinematic redundancy and the posture/movement problem. It blends traditional robotic constrained-optimal approaches with neuroscientific and evidence-based principles, proposing a "Task-space Separation Principle," a novel scheme for planning both posture and movement in redundant manipulators. The proposed framework is first tested in simulation and then compared with experimental motor strategies displayed by humans during redundant pointing tasks. The book also shows how this model builds on and expands traditional formulations such as the Passive Motion Paradigm and the Equilibrium Point Theory. Lastly, breaking with the neuroscientific tradition of planar movements and linear(ized) kinematics, the theoretical formulation and experimental scenarios are set in the nonlinear space of 3D rotations which are essential for wrist motions, a somewhat neglected area despite its importance in daily tasks.
Joni Bentley's unique expertise is a direct result of being a qualified practitioner not only of the Alexander Technique but also of Classical dressage, stress management and functional medicine. It is a rare person who can combine all these areas in order to reveal a new and much needed holistic dimension in the training of horse and rider. In "Riding Success Without Stress", the author demonstrates with clarity and perception how incorrect habits and negativity can be eradicated at source and replaced with calmness, straightness and grace by the application of the Alexander Technique and the Classical school. This book demonstrates how the Alexander Technique training programme ensures that, by optimising the use of your own mind and body, you can optimise the use of your horse and ride to success completely without stress. This ground-breaking and revolutionary book provides invaluable and thought-provoking information for the benefit of all riders and their horses.
This book collects the state-of-art and new trends in image analysis and biomechanics. It covers a wide field of scientific and cultural topics, ranging from remodeling of bone tissue under the mechanical stimulus up to optimizing the performance of sports equipment, through the patient-specific modeling in orthopedics, microtomography and its application in oral and implant research, computational modeling in the field of hip prostheses, image based model development and analysis of the human knee joint, kinematics of the hip joint, micro-scale analysis of compositional and mechanical properties of dentin, automated techniques for cervical cell image analysis, and biomedical imaging and computational modeling in cardiovascular disease. The book will be of interest to researchers, Ph.D students, and graduate students with multidisciplinary interests related to image analysis and understanding, medical imaging, biomechanics, simulation and modeling, experimental analysis
Assembles a collection of experts to provide a current account of different approaches (e.g., traditional, comparative and experimental) being applied to study mobility. Moreover, the book aims to stimulate new theoretical perspectives that adopt a holistic view of the interaction among intrinsic (i.e. skeletal) and extrinsic (i.e. environmental) factors that influence differential expression of mobility. Since the environment undoubtedly impacts mobility of a wide variety of animals, insights into human mobility, as a concept, can be improved by extending approaches to investigating comparable environmental influences on mobility in animals in general. The book teases apart environmental effects that transcend typical categories (e.g., coastal versus inland, mountainous versus level, arboreal versus terrestrial). Such an approach, when coupled with a new emphasis on mobility as types of activities rather than activity levels, offers a fresh, insightful perspective on mobility and how it might affect the musculoskeletal system.
Low back pain affects most of us at some time, and exercise is key to both its prevention and treatment. Critically appraising work from several approaches to produce an integrated, practical approach suitable for day-to-day clinicians and personal trainers, this essential guide looks at the science and practice of designing and teaching the best exercise programmes for this common condition. Learn: vital client assessment skills, which exercises to use and why, the most effective teaching methods, how to structure and progress a full backpain management programme. Aimed at student therapists and clinical exercise teachers, as well as trainers planning exercise programmes for subjects recovering from low back pain, Back Rehabilitation is essential reading for Therapists and Exercise academics and professionals of all types.
What a journey writing this text has been. The lengthy voyage started well before the idea hatched of authoring a text that contained the word "thermodynamics"! I was informed by my good friend and sometimes colleague Dr. Jose Antonio that by including that word in the title, nutritionists and exercise physiologists might avoid the subject. But almost every step of my expedition was taken on a rather solid foundation of thermodynamics and as such the topic could not possibly be omitted from the title or the text of a book about bioenergetics and energy expenditure. I am not a physicist. In fact I ?rst went to college to become a football coach. That vocational choice began to deteriorate when taking the mandatory anatomy and physiology courses required of all physical education majors. This information was exciting; my interest in physical education began to wane. During sophomore year, I answered an advertisement in the school newspaper requesting research subjects.
This book is suitable for anyone interested in training with the use of science. Training has to be science-based and science is the only way forward, thus the book title indicates Applied Physiology of Exercise. Any training can be answered with physiological rationale. If it cannot be answered, people are moving away from specific intelligent training and into erroneous combination high-load training (for example, combining aerobic and anaerobic interval training in a single training session) that may not elicit a higher percentage of physiological adaptations but may induce injuries as the body is not conditioned properly. Combination high-level training may be introduced at a later stage once an individual goes through specific conditioning following a general conditioning of building the 'base' or 'foundation' period for at least six months. Factual training with science takes time to attain superior performance without performance-enhancing drugs or supplements such as growth hormones and testosterone. Gathering the 'right' knowledge is important and hopefully readers will be better equipped after reading this book. There are questions in each chapter to enhance learning and comprehension. It requires readers to think, rationalize, answer, and apply the facts to training or weight loss programs. These questions aim to ignite the critical component of learning as readers critique and re-analyze their training program. Even though each training could be different with everyone holding on to a different training philosophy, facts through science are universal for all. |
![]() ![]() You may like...
Submodular Rate Region Models for…
Maximilian Riemensberger
Hardcover
The Diversity and Beauty of Applied…
Albrecht Boettcher, Daniel Potts, …
Hardcover
R5,867
Discovery Miles 58 670
The Pacemaker Clinic of the 90's…
N.M.Van Hemel, F.H. Wittkampf, …
Hardcover
R6,040
Discovery Miles 60 400
Distal Impact Ejecta Layers - A Record…
Billy P. Glass, Bruce M. Simonson
Hardcover
|