![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Chemical engineering
This book is intended to give technological background and practical examples, but also to give general insight into the on-going technology development in the area of biodetection. The content is therefore suitable for an array of stakeholders (decision makers, purchasing officers, etc.) and end-users of biodetection equipment within the areas of health, environment, safety and security, and military preparation. The book is divided into three sections. The first section discusses the fundamental physical and biological properties of bioaerosol's. The second section goes into more detail and discusses in-depth the most commonly used detection principles. The third section of the book is devoted to technologies that have been used in standoff applications. The last section of the book gives an overview of trends in bioaerosol detection. The reader of this book will gain knowledge about the different biodetection technologies and thus better judge their capabilities in relation to desired applications.
This book covers virtually all of the engineering science and technological aspects of separating water from particulate solids in the mining industry. It starts with an introduction to the field of mineral processing and the importance of water in mineral concentrators. The consumption of water in the various stages of concentration is discussed, as is the necessity of recovering the majority of that water for recycling. The book presents the fundamentals under which processes of solid-liquid separation are studied, approaching mixtures of discrete finely divided solid particles in water as a basis for dealing with sedimentation in particulate systems. Suspensions, treated as continuous media, provide the basis of sedimentation, flows through porous media and filtration. The book also considers particle aggregations, and thickening is analyzed in depth. Lastly, two chapters cover the fundamentals and application of rheology and the transport of suspensions. This work is suitable for researchers and professionals in
laboratories and plants, and can also serve as additional
readingfor graduate seminars on solid liquid separation as well as
for advanced undergraduate and graduate level studentsfor courses
of fluid mechanics, solid-liquid separation, thickening, filtration
and transport of suspensions in tubes and channels.
1 Automatisierung von Vakuumbeschichtungsanlagen.- 1.1 Vorbemerkungen.- 1.2 Steuerungssysteme.- 1.3 Materialfluss.- 1.3.1 Batch-Anlagen.- 1.3.2 Durchlauf-Anlagen (in-line-Anlagen).- 1.3.3 Cluster-Anlagen.- 1.3.4 Bandanlagen.- 1.4 Automatisierung von Teilsystemen.- 1.4.1 Pumpsatz-Steuerungen.- 1.4.2 Druckregelungen.- 1.4.2.1 Druckregelung durch Saugvermoegen.- 1.4.2.2 Druckregelung durch Gasfluss.- 1.4.3 Substrattransport.- 1.4.4 Substrattemperatur.- 1.4.4.1 Heizeinrichtungen.- 1.4.4.2 Messen und Regeln der Substrattemperatur.- 1.4.5 Automatisierung von Verdampfern.- 1.4.5.1 Widerstands-Verdampfer.- 1.4.5.2 Induktive Verdampfer.- 1.4.5.3 Elektronenstrahl-Verdampfer.- 1.4.6 Automatisierung von Sputterprozessen.- 1.4.6.1 Gleichstrom-Sputtern.- 1.4.6.2 Hochfrequenz-Sputtern.- 1.4.6.3 Magnetfeld-Verstellung.- 1.4.6.4 Plasma-Erkennung.- 1.4.7 Schichtdicke und Rate.- 1.4.7.1 Schichtdickenregelung.- 1.4.7.2 Abschalt-Kriterien.- 1.4.7.3 Ratenregelung.- 1.4.8 Reaktivprozesse.- 1.5 Beispiele fur die Automatisierung von Beschichtungsprozessen.- 1.5.1 Prozesssteuerung fur Aufdampfanlagen.- 1.5.2 Prozesssteuerung fur Sputter-Durchlauf-Anlagen.- 1.5.3 Automatisierung von CVD-Anlagen.- 2 Messungen an Dunnen Schichten wahrend des Beschichtungsprozesses.- 2.1 Bestimmung der Schichtdicke durch Widerstandsmessung.- 2.2 Ratenmessung durch Teilchen-Ionisierung und -Anregung.- 2.2.1 UEberblick.- 2.2.2 Ionensonde.- 2.2.3 Massenspektrometer.- 2.2.4 EIES.- 2.3 Schichtdicken und Aufdampfratemessung mit Schwingquarz.- 2.3.1 Einleitung und Ruckblick.- 2.3.1.1 Frequenz-Messmethode.- 2.3.1.2 Periodenzeit-Messmethode.- 2.3.1.3 Z-Match(R)-Verfahren.- 2.3.1.4 Zweifrequenz-oder Auto-Z-Match(R)-Verfahren.- 2.3.2 Sensor-Kennlinie (Massenempfindlichkeit).- 2.3.3 Grenzen der Genauigkeit und des Verwendungsbereichs.- 2.3.3.1 Einfluss des angewandten Verfahrens.- 2.3.3.2 Einfluss der Materialdichte.- 2.3.3.3 Schicht-Relaxation.- 2.3.3.4 Auswirkung intrinsischer Schichtspannungen.- 2.3.3.5 Temperatureinfluss.- 2.3.3.5.1 Frequenz-Temperaturkennlinie des Quarzes.- 2.3.3.5.2 Frequenz-Temperaturkennlinie des vollstandigen Messkopfes.- 2.3.3.6 Auftreten und Ursachen von Frequenzsprungen.- 2.3.3.6.1 Grenzschicht Quarz-Elektrode.- 2.3.3.6.2 Kopplung mit Nebenmoden.- 2.3.3.7 Anzeige der Messquarz-Restverwendungsdauer.- 2.3.3.7.1 Warnung bei Erreichen einer bestimmten Frequenzanderung.- 2.3.3.7.2 Dampfungs-bzw. materialabhangige Anzeige der Restverwendungsdauer.- 2.3.4 Schlussfolgerung und Zusammenfassung.- 2.4 Optische Messverfahren.- 2.4.1 Eilipsometer.- 2.4.2 Optische Prozesstechnik.- 2.4.2.1 Vorbemerkungen.- 2.4.2.2 Systematik der optischen Schichtdickenmessung.- 2.4.2.3 Monochromatische optische Schichtdickenmessung.- 2.4.2.3.1 Triggerpunktabschaltung/Extremwertabschaltung.- 2.4.2.3.2 Fehlerkompensation der direkten Messmethode bei Extremwertabschaltungen von ?/4-Schichtsystemen.- 2.4.2.3.3 Triggerpunktabschaltung mit On-Line-Korrektur.- 2.4.2.3.4 Probleme bei der Umsetzung der monochromatischen Schichtdickenmessung in die Praxis.- 2.4.2.3.5 Prozessfotometer fur die monochromatische optische Schichtdickenmessung.- 2.4.2.4 Breitbandige optische Schichtdickenmessung/ On-line-Nachoptimierung.- 2.4.3 Beispiele fur die Berechnung und Realisierung von Systemen aus dunnen Schichten.- 2.4.3.1 Matrixmethode zur Berechnung optischer Schichtsysteme.- 2.4.3.2 Eigenschaften einer Einfachschicht.- 2.4.3.3 Symmetrische Schichtsysteme.- 2.4.3.4 Schichtsysteme aus ?/4-und ?/2-Schichten.- 2.4.3.5 Rechnerunterstutzter Entwurf von Schichtsystemen.- 2.5 Schichtdickenbestimmung durch Wagung im Vakuum.- 2.6 Bestimmung der Schichtdicke und der Schichtzusammensetzung durch Roentgenemission und Roentgenfluoreszenz.- 2.7 Atomemissionsspektroskopie.- 3 Messungen an dunnen Schichten nach beendetem Beschichtungsprozess.- 3.1 Messung der thermischen Leitfahigkeit.- 3.1.1 Allgemeines.- 3.1.2 Experimentelle Bestimmung.- 3.2 Elektrische Leitfahigkeit.- 3.2.1 Definition.- 3.2.2 Bestimmungs
This book is a comprehensive, theoretical, practical, and thorough guide to XAFS spectroscopy. The book addresses XAFS fundamentals such as experiments, theory and data analysis, advanced XAFS methods such as operando XAFS, time-resolved XAFS, spatially resolved XAFS, total-reflection XAFS, high energy resolution XAFS, and practical applications to a variety of catalysts, nanomaterials and surfaces. This book is accessible to a broad audience in academia and industry, and will be a useful guide for researchers entering the subject and graduate students in a wide variety of disciplines.
Traditionally, process design and control system design are performed sequentially. It is only recently displayed that a simultaneous approach to the design and control leads to significant economic benefits and improved dynamic performance during plant operation.
The cutting-edge advances in this research field are nicely pictured in the chapters of this volume. They come from world's leading laboratories engaged in the development of molecular machines and are authored by some of the most respected scientists in the field. This volume shows, on the one hand, the level of ingenuity and technical capability reached in the construction of artificial nanomachines roughly two decades after their inception. On the other hand, it conveys the excitement about the enormous opportunities as well as the challenges this research area presents, as the interest of researchers is shifting from ensemble to single-molecule measurements and from homogeneous to heterogeneous environments. Indeed, as Feynman said "when we have some control of the arrangement of things on a molecular scale, we will get an enormously greater range of possible properties that substances can have." Although the answer to the "when" question is not easy to find, there is no doubt that artificial molecular machines and motors will lead to a wide variety of applications which we cannot even envisage today.The Nobel Prize in Chemistry 2016 was awarded jointly to Jean-Pierre Sauvage, Sir J. Fraser Stoddart and Bernard L. Feringa "for the design and synthesis of molecular machines". Both Jean-Pierre Sauvage and Bernard L. Feringa contributed to this volume. The goal of each thematic volume in this series is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
The operation of everything in the universe needs a special "material"-energy. The earth is no exception. There are many kinds of energy sources on earth. But where does the earth's energy come from? The answer is that everything grows under the sun. Developing renewable energy is of strategic importance to achieve sustainable energy supply. Simulating natural photosynthesis is the ultimate goal of effi cient solar energy conversion. Photovoltaic technology has been widely used in industry and will be one of the major energy sources in the future. Developing new materials and structures, the photoelectric conversion effi ciency of solar cells will be improved day by day, and solar cells will attract more and more attention. This book presents principles of solar photovoltaic conversion, and introduces the physical and chemical processes involved. Mechanisms which affect solar cell performance are also discussed.
Ion Exchange Materials: Properties and Applications fills a
"two-dimensional" gap in books currently available on the subject.
Firstly, there is a lack of modern comprehensive publications on
the chemistry of ion exchange materials and on the relationships
between their properties and practical applications. Secondly,
there are few books on ion exchange chemistry that are targeted to
industrial R&D specialists and research students who (i) do not
work with ion exchange on a daily basis, (ii) need to develop
competence in this area, and (iii) find it difficult to start
studying the subject from primary scientific publications.
As a consequence of social, technological, political and economic changes, the field of organizations management and engineering becomes highly complex, calling for more effective strategies. In this book, the authors discuss innovative technological resources and their implications on organizational policies, strategies, and flexibility, as well as on sustainable management.
Horizons in Sustainable Industrial Chemistry and Catalysis, Volume 178, presents a comprehensive picture of recent developments in terms of sustainable industrial processes and the catalytic needs and opportunities to develop these novel routes. Each chapter includes an introduction and state-of-the-art in the field, along with a series of specific aspects and examples. The book identifies new opportunities for research that will help us transition to low carbon and sustainable energy and chemical production. Users will find an integrated view of the new possibilities in this area that unleashes new possibilities in energy and chemistry.
Although many papers have been published describing methods for the inorganic analysis of petroleum no book has previously appeared devoted exclusively to this subject. The purpose of this work is to provide a laboratory handbook for industrial analysts of various degrees of professional training covering the determination of those elements commonly occurring in various types of petroleum products. The procedures represent, from the author's point of view, a reasonable compromise among the usual conflicting interests of speed, accuracy, and cost, and emphasize manufacturing rather than research applications. CONTENTS: Introduction 1. The Inorganic Components of Petroleum 2. Preparation of Samples for Inorganic Analysis: Direct Ashing, Soft Ashing and Wet Oxidation, Direct Wet Oxidation, Fusion with Pyrosulfate, The Oxygen Bomb, The Peroxide Bomb, Sodium Dehalogenation, Extraction Methods, Combustion Methods, Alkaline Sulfide Treatment, Direct Methods, Combustion Tube, Emission Spectrograph, X-rays 3. Aluminum: Colorimetric Determination, Gravimetric Determination 4. Arsenic 5. Barium: Determination in New Lubricating Oils, Determination in Used Lubricating Oils 6. Boron: Colorimetric Determination, Alkalimetric Determination 7. Calcium: Determination in New Lubricating Oils and Additives, Determination in Used Lubricating Oils, Estimation of Smaller Concentrations 8. Chromium 9. Cobalt: Electrolytic Determination, Volumetric Determination 10. Copper: Determination in Gasoline, Determination in Naphthenate Driers, Determination in Distillates, Determination in Used Lubricating Oils 11. The Halogens: Peroxide Bomb Combustion, Sodium Dehalogenation, Extraction Procedures, Wickbold Oxyhydrogen Combustion, Potentiometric Determination of Bromide and Chloride, Colorimetric Determination of Chloride, Volumetric Determination of Fluoride 12. Iron: Determination in Distillates, Determination in Used Lubricating Oils, Determination in Naphthenate Driers, Colorimetric Determination, Volumetric Determination 13. Lead: Determination in Naphthenate Driers, Determination in Light Distillates, Determination in Lubricating Oils 14. Manganese 15. Molybdenum: Determination in New Lubricating Oils, Determination in Used Lubricating Oils 16. Nickel: Determination in Distillates, Gravimetric Determination 17. Nitrogen: Determination of Total Nitrogen by Kjeldahl Method, Determination of Basic Nitrogen, Determination of Quaternary Ammonium Compounds 18. Phosphorus: Decomposition by Ashing in Presence of Zinc Oxide, Colorimetric Methods, Alkalimetric Determination of Phosphorus 19. Selenium: Colorimetric Determination, Volumetric Determination 20. Silicon: Determination in Synthetic Oils, Determination of Silica in Used Lubricating Oils 21. Sodium: Decomposition of Sample by Direct Ashing, Gravimetric Determination, Determination by Flame Photometer 22. Sulfur: Determination by Peroxide Fusion Bomb, Determination by Wickbold Oxyhydrogen Combustion 23. Vanadium: Determination in Distillates, Determination in Fuel Oils, Volumetric Determination 24. Zinc: Determination in Additives and Naphthenate Driers, Determination in New and Used Lubricating Oils, Potentiometric Determination, Gravimetric Determination; Appendix; Wickbold Apparatus for Oxyhydrogen Combustion; Index
Contents - 1. The Free Atom- The contribution of spectroscopy - The Rutherford-Bohr model of the atom - Modern quantum theory - The Pauli exclusion principle - The periodic system - Isotopes - 2. The Bound Atom - Band structure - The attractive and repulsive forces in binding - Stable electron configurations - Ionic bonding - Covalent bonding - Van der Waals' forces - The metallic bond - Implications of the type of bond on the structure of elements - Implications on conductivity - 3. Constitution - Crystallographic principles - The unit cell - The face centred cubic lattice - The close-packed hexagonal lattice. The body-centred cubic lattice - Twin crystals - The rhombohedral lattice - The tetragonal lattice - The structure of compounds - The silicate structure - Glasses - Carbon compounds - 4. Imperfections in Crystals - The surface - Vacant lattice sites - Interstitial atoms - Line and plane defects - Dislocations - Dislocation climb - Dislocation jogs - Imperfect dislocations - Sessile dislocations - Frank-Read sources - 5. The Vibration of Atoms and their Thermal Properties - The lattice vibration - Specific heat - Thermal expansion - Melting - Anisotropy - Thermal conductivity of insulators - Thermal shock - Thermal conductivity of good conductors - 6. Electrical, Magnetic, and Optical Properties - Electrical conductivity - Ionic conductivity - Semiconductors - Thermoelectric effects - Magnetic properties - Ferromagnetism - Antiferromagnetism and ferrimagnetism - Dielectrics - Optical properties - Other electromagnetic radiations - 7. Mechanical Properties - General aspects - Electricity - Plasticity - Resolved shear stress - The role of dislocations in plastic flow - The effect of temperature - Fracture - Creep - Fatigue - Thermal cycling - 8. Metals and Alloys - Properties of pure metals - Compatibility - Interstitial solid solution - Substitutional solid solution - Intermetallic compounds - Equilibrium and non-equilibrium - The properties of alloys - Precipitation in alloys - Complex alloys - 9. Non-metallic Materials - General - Timber - Stone, concrete, and asphalt - Plastics - Ceramics and glasses - Cermets - 10. Service Factors - General - Heterogeneity - Residual stresses - Corrosion - Radiation damage - Conclusion - Further Reading - Author Index - Subject Index - Preface - This book attempts to provide the broad background, to illustrate the basic reasons for the properties of elements, and to explain the consequences of chemical combination, alloying, and mixing. Most previous books have touched only lightly on the atom itself, but my experience in teaching engineers in the University of Manchester suggests that a greater depth of approach is welcome, perhaps because it can account for so much of the subsequent behaviour of metals.
The capability to generate potable water from polluted sources is growing in importance as pharmaceuticals, microplastics and waste permeate our soil. Nanotechnology allows for improvements in water remediation technologies by taking advantage of the unique properties of materials at this small scale.
Radio Frequency Identification (RFID) Technology and Application in Fashion and Textile Supply Chain highlights the technology of Radio Frequency Identification (RFID) and its applications in fashion and textile manufacturing and supply chain management. It discusses the brief history, technology, and working of RFID including the types of RFID systems. It compares differences, advantages, and disadvantages of RFID and barcode technologies. It also covers application of RFID technology in textile and fashion manufacturing, supply chain, and retail, and RFID-based process control in textile and fashion manufacturing. It covers various applications of RFID starting from fibre manufacturing through yarn and fabric manufacturing; fabric chemical processing; garment manufacturing and quality control; and retail management. It offers case studies of RFID adoption by famous fashion brands detailing the competitive advantages and discusses various challenges faced and future directions of RFID technology.
The Chemical Batch Reactor is aimed at tackling the above problems from a blending of academic and industrial perspectives. Advanced solutions (i.e., those based on recent research results) to the four fundamental problems of modeling, identification, control and fault diagnosis for batch processes are developed in detail in four distinct chapters. In each chapter, a general overview of foundational concepts is also given, together with a review of recent and classical literature on the various subjects. To provide a unitary treatment of the different topics and give a firm link to the underlying practical applications, a single case study is developed as the book progresses; a batch process of industrial interest, i.e., the phenol-formaldehyde reaction for the production of phenolic resins, is adopted to test the various techniques developed. In this way, a roadmap of the solutions to fundamental problems, ranging from the early stages of the production process to the complete design of control and diagnosis systems, is provided for both industrial practitioners and academic researchers.
There is hardly a technical library in the world in which the volumes of the Chemical Formulary (Volumes 1-34) do not occupy a prominent place. Chemists both experienced and beginner, continually refer to them. It does not duplicate any of the formulas included in previous volumes, but lists a wide array of modern and salable products from all branches of the chemical industries. An excellent reference for formulation problems. - CONTENTS - I. Introduction - II. Adhesives - III. Beverages and Foods - IV. Cosmetics - V. Coatings - VI. Detergents and Disinfectants - VII. Drug Products - VIII. Metal Treatments - IX. Polishes - X. Textile Specialties - XI. Miscellaneous - Appendix - Index - Preface - Chemistry, as taught in our schools and colleges, concerns chiefly synthesis, analysis, and engineering-and properly so. It is part of the right foundation for the education of the chemist. Many a chemist entering an Industry soon finds that most of the products manufactured by his concern are not synthetic or definite complex compounds, but are mixtures, blends, or highly complex compounds of which he knows little or nothing. The literature in this field, if any, may be meager, scattered, or obsolete. Even chemists with years of experience In one or more Industries spend considerable time and effort in acquainting themselves with any new field which they may enter. Consulting chemists similarly have to solve problems brought to them from industries foreign to them. There was a definite need for an up-to-date compilation of formulae for chemical compounding and treatment. Since the fields to be covered are many and varied, an editorial board of chemists and engineers engaged in many industries was formed. Many publications, laboratories, manufacturing firms, and Individuals have been consulted to obtain the latest and best information. It is felt that the formulas given in this volume will save chemists and allied workers much time and effort. Manufacturers and sellers of chemicals will find, In these formulae, new uses for their products. Non-chemical executives, professional men, and Interested laymen will make through this volume a "speaking acquaintance" with products which they may be using, trying or selling. It often happens that two Individuals using the same Ingredients in the same formula get different results. This may be due to slight deviations in the raw materials or unfamiliarity with the intricacies of a new technique. Accordingly, repeated experiments may be necessary to get the best results. Although many of the formulas given are being used commercially, many have been taken from the literature and may be subject to various errors and omissions. This should be taken into consideration. Wherever possible, it is advisable to consult with other chemists or technical workers regarding commercial production.
Quantitative structure-activity relationships (QSARs) represent predictive models derived from the application of statistical tools correlating biological activity or other properties of chemicals with descriptors representative of molecular structure and/or property. Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment discusses recent advancements in the field of QSARs with special reference to their application in drug development, predictive toxicology, and chemical risk analysis. Focusing on emerging research in the field, this book is an ideal reference source for industry professionals, students, and academicians in the fields of medicinal chemistry and toxicology.
Properties of chemical compounds and their mixtures are needed in
almost every aspect of process and product design. When the use of
experimental data is not possible, one of the most widely used
options in the use of property estimation models.
The second part of Bioenergy: Principles and Technologies continues the discussion of biomass energy technologies covering fuel ethanol production, pyrolysis, biomass-based hydrogen production and fuel synthesis, biodiesel, municipal solid water treatment and microbial fuel cells. With a combination of theories, experiments and case studies, it is an essential reference for bioenergy researchers, industrial chemists and chemical engineers.
|
![]() ![]() You may like...
Hydrogen Fuel Cell Technology for…
Raluca Andreea Felseghi, Ioan Aschilean
Hardcover
R6,464
Discovery Miles 64 640
Song For Sarah - Lessons From My Mother
Jonathan Jansen, Naomi Jansen
Hardcover
![]()
Talking, Drawing, Writing - Lessons for…
Martha Horn, Mary Ellen Giacobbe
Hardcover
R1,041
Discovery Miles 10 410
Scrambled Sentences: Phonics - 40…
Immacula A Rhodes, Immacula Rhodes
Paperback
Remote Sensing and Digital Image…
Marcelo de Carvalho Alves, Luciana Sanches
Paperback
R1,612
Discovery Miles 16 120
|