![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Chemical engineering
Biomedical Applications of Green Composites reviews the use of green composite materials in drug delivery, with a focus on capsules, resins and ceramides in biomedical fields. Chapters present green composites of polymeric origin and targeted delivery of drugs into various parts of the human body. Other sections in the book cover topics related to the applications of green composites in areas such as antimicrobial agents, pathogen control, surgical applications, dentistry and cancer therapy.
Advanced Technologies in Wastewater Treatment: Oily Wastewaters focuses on characteristics and innovative treatment technologies of oily wastewater from various resources. Primary and physical treatment methods such as absorption, adsorption, followed by common techniques like coagulation and fluctuation are discussed in detail. Applications of other advanced methods for the treatment of oily wastewaters like utilization of membranes and stripping gases are covered as well. Finally, novel technologies applied in purification of oily wastewaters such as photocatalytic degradation and biological processes are reviewed and future outlooks and prospects are also illustrated.
Current Trends and Future Developments on (Bio-) Membranes: Membrane Technologies in Environmental Protection and Public Health- Challenges and Opportunities illustrates the application of membrane technology used in separation processes, along with the advantages of membranes in comparison with other types of separation methods. In addition, the book illustrates new approaches for pollution monitoring and helps researchers develop new membrane systems for air or water pollution monitoring. Sections focus on the application of membrane technology to new membranes, hence it is ideal for R&D managers in industry and a variety of others, including academic researchers and postgraduate students working in strategic treatment, separation and purification processes.
Integrated Membrane Reactors explores recent developments and future perspectives in the area of membrane reactor (MR) systems. It includes fundamental principles, the different types of membrane materials (such as polymeric and inorganic), the different types of membrane reactors (such as Micro MRs, Enzymatic MRS, Photo-catalytic MRs, Pervaporation MRs, Electrochemical MRs, etc.), their industrial perspective and, finally, there also is an economic evaluation of the metallic MRs. The book provides an extensive review in the area of MRs for each kind of application present in the specialized literature and discusses their modelling and design approaches necessary for MR systems validation in achieving high conversions, energy savings, high yields and high hydrogen (or others) products of the reactions studied.
Advances in Synthesis Gas: Methods, Technologies and Applications: Syngas Process Modelling and Apparatus Simulation consists of numerical modeling and simulation of different processes and apparatus for producing syngas, purifying it as well as synthesizing different chemical materials or generating heat and energy from syngas. These apparatus and processes include, but are not limited to, reforming, gasification, partial oxidation, swing technologies and membranes.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Solvents and Extraction Technology provides information on the use of green solvents and their applications in the synthesis of pharmaceutical drugs, energy conversion and storage, catalysis, biodiesel synthesis, multicomponent reactions, waste valorization, and more. The book features introductory chapters related to the applications of green solvents and related extraction technology for sustainable development, including research trends, technical development, environment issues, and related concerns. The book provides examples covering the extraction of nanocellulose (from agricultural wastes), polysaccharides, phenolic compounds, antioxidants (from vegetables), biomolecules and green solvents (from biomass and precious metals).
Green Sustainable Process for Chemical and Environmental Engineering and Science: Natural Materials-Based Green Composites 2: Biomass deals with using biomass in the preparation of green composites and focuses on biomass from agro-industrial waste, geopolymers, natural gums, plants, green algae, etc. The book covers applications in allied areas such as energy and environment that process fuels and chemicals, wastewater treatment, coatings and catalysis. The book deals with a broad range of material types, including natural fiber reinforced polymer composites, particulate composites, fiberboard, wood fiber composites, and plywood composites that utilize natural, renewable, and biodegradable agricultural biomass.The book complements Natural Materials-based Green Composites 1: Plant Fibers that includes introductory information and various innovative applications of most important plant fiber-based materials such as wood fibers, vegetable fibers, jute fibers, stalk fibers, and hemp fibers.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Solid-State Energy Storage - A Path to Environmental Sustainability offers an in-depth analysis of the synthesis methods, manufacturing techniques and underlying mechanisms of ionic and electronic-ion transport in various single phase and multi-phase components for electric power storage, such as lithium and sodium ion batteries, sulfur batteries, and lithium-metal electrochemical systems. Though solid-state batteries are not yet available on the market, many large corporations and small companies pursue the goal of implementing this technology for numerous applications and its transfer to other markets.
Advances in Chemical Engineering serial, Volume 60 highlights new advances in the field with this new volume presenting interesting chapters. Each chapter is written by an international board of authors.
CO2-philic Polymers, Nanocomposites and Chemical Solvents: Capture, Conversion and Industrial Products is a multidisciplinary book that provides a compilation of concrete information on various polymers, porous materials hydrogels, membranes, nanoparticles, biochar metal-organic frameworks, bioinspired surfaces, polysaccharides, organic solvents, chemicals, eutectic solvents, amine-based chemical compounds, porphyrins, ionic liquids, ceramics and cutting-edge technologies for CO2 sequestration and conversion. Each chapter covers the latest developments and methods of synthesis and applications in the area. The book discusses, in detail, valuable commercial products from CO2, such as ethanol, methanol, formic acid, and precursors of other fine chemicals. The book covers the scientific, technological and practical concepts concerning the research, development and realization of CO2-philic polymers, nanocomposites and chemical solvents. This makes it a valuable resource for academic researchers and graduate students in chemical engineering, materials science and chemical engineers/engineers working in the industry.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Recent Advances in Nanocarriers covers nanocarrier synthesis techniques, as well as methods for encapsulating bioactive compounds. The book explores the tests carried out to evaluate their pharmacological properties, in addition to investigating the recent results on clinical tests carried out for some nanocarriers. This book addresses the most recent advances in nanocarriers and their diverse applications in modern medicine for the treatment of diseases and diagnostics. Recent clinical tests that some nanocarriers are undergoing is discussed as well.
Novel Approaches towards Wastewater Treatment and Resource Recovery Technologies discusses various cost-efficient aspects of wastewater treatment along with resource recovery options. The book covers biological wastewater treatment, the application of membranes and their modifications, advanced oxidation techniques, and the application of nanoparticles for the enhancement of performance as well as various integrated technologies for resource recovery along with pilot scale potentials. The book covers both domestic and industrial wastewaters and provides resources for sustainable solutions. It provides the basic fundamentals and recent updated data. Case studies are included to give the glimpse of the real-world application. Similarly, pilot scale studies are considered for real life implementation of the concept.
Environmental Applications of Microbial Nanotechnology: Emerging Trends in Environmental Remediation discusses emerging trends and recent advancements in environmental remediation. The book provides environmental applications of microbial nanotechnology that helps readers understand novel microbial systems and take advantage of recent advances in microbial nanotechnologies. It highlights established research and technology on microbial nanotechnology's environmental applications, moves to rapidly emerging aspects and then discusses future research directions. The book provides researchers in academia and industry with a high-tech start-up that will revolutionize the modern environmental applications of microbial nanotechnology research.
Principles of Multiple-Liquid Separation Systems: Interaction, Application and Advancement describes the basic principles and advancements of multiple-liquid separation systems in downstream processing. Several important elements are included, such as the fundamental process and mechanisms of the multiple-liquid separation system, key principles of the interaction between different solvents and phase components, applications, and green solvents for the separation system. Furthermore, the book gives insights in commercializing this separation technique to industrial scale and making the process environmentally and economically sustainable. The book also presents constructive critics of this separation technique for both past and the latest findings.
Advanced Nanomaterials and Their Applications in Renewable Energy, Second Edition presents timely topics related to nanomaterials' feasible synthesis and characterization and their application in the energy fields. The book examines the broader aspects of energy use, including environmental effects of disposal of Li-ion and Na batteries and reviews the main energy sources of today and tomorrow, from fossil fuels to biomass, hydropower, storage power and solar energy. The monograph treats energy carriers globally in terms of energy storage, transmission, and distribution, addresses fuel cell-based solutions in transportation, industrial, and residential building, considers synergistic systems, and more. This new edition also offers updated statistical data and references; a new chapter on the synchronous x-ray based analysis techniques and electron tomography, and if waste disposal of energy materials pose a risk to the microorganism in water, and land use; expanding coverage of renewable energy from the first edition; with newer color illustrations.
Advances in Synthesis Gas: Methods, Technologies and Applications: Syngas Purification and Separation considers different common and novel processes for the purification of produced syngas, such as absorption, adsorption, membrane, cryogenic distillation and particulate separation technologies in addition to thermal and oxidative processes for tar removal. The role of various catalysts or materials in absorption, adsorption and membrane processes are discussed in separate chapters to address each in more detail.
Advances in Synthesis Gas: Methods, Technologies and Applications: Syngas Products and Usage considers the applications and usages of syngas for producing different chemical materials such as hydrogen, methanol, ethanol, methane, ammonia, and more. In addition, power generation in fuel cells, or in combination with heat from syngas, as well as iron reduction with economic and environmental challenges for syngas utilization are described in detail.
Wastewaters generated from food production and agricultural activities are a source of environmental pollution due to their huge amount of nutrients, organic carbon, nitrogenous organics, inorganics, suspended and dissolved solids, and high biochemical and chemical oxygen demands. Advanced Technologies in Wastewater Treatment: Food Processing Industry provides an update on emerging technologies including oxidative and anaerobic processes (flotation, coagulation, sedimentation, filtration, adsorption, primary settling, secondary activated sludge, anaerobic digestion), ion exchange, membrane-based operations, adsorption/bio-sorption and advanced biological treatment to provide safe and clean water as well as to recover primary resources from food processing wastewaters. In addition, the integration of these technologies will be also considered in the logic of the process intensification strategy. Innovative and affordable solutions are proposed in the field of fruit and vegetable processing industry, fishing industry, meat and poultry industry, dairy production, oil and fat processing.
Synthesis, Characterization and Applications of Graphitic Carbon Nitride: An Uprising Carbonaceous Material offers an up-to-date record on the major findings and observations relating to graphitic carbon nitride-based systems, elaborately covering all the aspects of carbon nitride as chemical stable and pollution-free materials that are easy to prepare in a cost-effective way, along with their applications in photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, sensors and supercapacitors. Graphitic carbon nitride (g-C3N4) is a fascinating visible light photocatalyst, which possesses many properties that can be used for many applications. This makes the book an indispensable reference for (post)-graduate students, researchers in academia and industry, and engineers working in the field of graphitic carbon-nitride-based systems.
Eco-Friendly Corrosion Inhibitors: Principles, Designing, and Applications wraps up new developments in corrosion inhibitors and their current applications in real-life environments such as in strong acidic pickling and petroleum-based liquids. The book covers several types of environmentally-friendly corrosion inhibitors in detail. In addition, it highlights both established research and technology on industrial scale corrosion inhibitors and their rapidly emerging aspects and future research directions.
The chemical industry changes and becomes more and more integrated worldwide. This creates a need for information exchange that includes not only the principles of operation but also the transfer of practical knowledge. Integration and Optimization of Unit Operations provides up-to-date and practical information on chemical unit operations from the R&D stage to scale-up and demonstration to commercialization and optimization. A global collection of industry experts systematically discuss all innovation stages, complex processes with different unit operations, including solids processing and recycle flows, and the importance of integrated process validation. The book addresses the needs of engineers who want to increase their skill levels in various disciplines so that they are able to develop, commercialize and optimize processes. After reading this book, you will be able to acquire new skills and knowledge to collaborate across disciplines and develop creative solutions.
Applications of Nanofluids in the Chemical and Biomedical Process Industry provides detailed knowledge about the mathematical, numerical, and experimental methodologies of the application of nanofluids in heat transfer, mass transfer, and biomedical processes. The book is divided into three main sections with the first providing a detailed overview of the thermophysical and optical properties of nanofluids enhancement in heat exchangers and boiling operations. The second section gives a detailed overview of nanofluid application in CO2 absorption/regeneration and metal extraction/stripping operations, while the third provides an overview of the application ofnanofluids in biomedical processes. The book includes recent advances, as well as challenges to nanofluid applications in industrial processes and will be useful for researchers and professionals working in industry or academia, as well as others interested in the applications of the nanofluids to industrial processes for design purposes.
Hydrometallurgy: Practice provides the necessary fundamental background to the multidisciplinary field of hydrometallurgy and provides the tools to be able to utilize the theory to quantitatively describe, model and control the unit operations used in hydrometallurgical plants. The book describes the development and operation of processes utilizing hydrometallurgical operations. It is a valuable resource and reference for researchers, academics, students and industry professionals. The book focuses on quantitative problem solving with many worked examples and focused problems based on Nicol's many years' experience in the teaching of hydrometallurgy to students, researchers and industry professionals.
Oxygen Reduction Reaction: Fundamentals, Materials and Applications covers the design, synthesis and performance efficacies of the entire spectrum of oxygen reduction catalysts, extrapolating down to their applications in practical, alternative, renewable energy devices. Catalysts covered include heme inspired iron-based, heme inspired non-iron-based, non-heme-based, noble metal-based, non-noble metal-based and metal-free homogeneous and heterogeneous catalysts. The book contains critical analyses and opinions from experts around the world, making it of interest to scientists, engineers, industrialists, entrepreneurs and students.
Industrial wastewater contains a large variety of compounds, such as hazardous organic pollutants, heavy metals, salts and nutrients, which makes its treatment challenging. On the other hand, the sewage treatment with existing technologies is not cost-effective due to high energy demand and contributes to greenhouse gas emission. Thus, the use of conventional water treatment methods is neither sustainable nor always effective. In this sense, BESs has emerged as a promising technology to treat complex industrial wastewater with a sustainable manner. Development in Wastewater Treatment Research and Processes: Bioelectrochemical Systems for Wastewater Management analyses and discusses the potential of microbial and electrochemical based hybrid processes for the treatment of complex industrial wastewater along with the recovery of valuable compounds and water reutilization. The most significant advantages of BES are high effectiveness, low toxicity, gentle operation conditions, environmentally friendly treatment without sludge accumulation and energy conservation. Bioelectrochemical systems (BES) are emerging as an exciting platform to convert chemical energy of organic wastes into electricity or hydrogen or value-added chemical commodities. In addition, recent and future trends in BES are highlighted. |
You may like...
The Sage and the People - The Confucian…
Sebastien Billioud, Joel Thoraval
Hardcover
R3,581
Discovery Miles 35 810
The Book Of Joy - Lasting Happiness In A…
Dalai Lama, Desmond Tutu
Hardcover
(11)
|