![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chemical spectroscopy, spectrochemistry
Using the nano metric resolution of atomic force microscopy techniques, this work explores the rich fundamental physics and novel functionalities of domain walls in ferroelectric materials, the nano scale interfaces separating regions of differently oriented spontaneous polarization. Due to the local symmetry-breaking caused by the change in polarization, domain walls are found to possess an unexpected lateral piezoelectric response, even when this is symmetry-forbidden in the parent material. This has interesting potential applications in electromechanical devices based on ferroelectric domain patterning. Moreover, electrical conduction is shown to arise at domain walls in otherwise insulating lead zirconate titanate, the first such observation outside of multiferroic bismuth ferrite, due to the tendency of the walls to localize defects. The role of defects is then explored in the theoretical framework of disordered elastic interfaces possessing a characteristic roughness scaling and complex dynamic response. It is shown that the heterogeneous disorder landscape in ferroelectric thin films leads to a breakdown of the usual self-affine roughness, possibly related to strong pinning at individual defects. Finally, the roles of varying environmental conditions and defect densities in domain switching are explored and shown to be adequately modelled as a competition between screening effects and pinning.
This thesis presents a novel single-molecule spectroscopy method that, for the first time, allows the dipole orientations and fluorescence lifetimes of individual molecules to be measured simultaneously. These two parameters are needed to determine the position of individual molecules with nanometer accuracy near a metallic structure. Proof-of-principle experiments demonstrating the value of this new single-molecule localization concept are also presented. Lastly, the book highlights potential applications of the method in biophysics, molecular physics, soft matter and structural biology.
This lecture notesbook presents how enhanced structural information of biomolecular ionscan be obtainedfrom interaction with photons of specific frequency - laser light. The methods described in the book ""Laser photodissociation and spectroscopy of mass-separated biomolecular ions"" make use of the fact that the discrete energy and fast time scale of "photoexcitation "can provide more control in ion activation. This activation is the crucial process producing structure-informative product ions that cannot be generated with more conventional heating methods, such as collisional activation. The book describes how the powerful separation capabilities and sensitivity of mass spectrometry (MS) can be combined with the structural insights from spectroscopy by measuring vibrational and electronic spectra of trapped analytes. The implementation of laser-based "photodissociation "techniques in MS requires basic knowledge of tunable light sources and ion trapping devices. This book introduces the reader to key concepts and approaches in molecular spectroscopy, and the light sources and ion traps employed in such experiments. The power of the methods is demonstrated by spectroscopic interrogation of a range of important biomolecular systems, including "peptides," "proteins," and "saccharides," with laser light in the ultraviolet-visible, and infrared range. The book ""Laser photodissociation and spectroscopy of mass-separated biomolecular ions"" isan indispensable resource for students and researchers engaged or interestedin this emerging field. It provides the solid background of key concepts and technologies for the measurements, discusses state-of-the-art experiments, and provides an outlook on future developments and applications."
This book presents a comprehensive description of phonons and their interactions in systems with different dimensions and length scales. Internationally-recognized leaders describe theories and measurements of phonon interactions in relation to the design of materials with exotic properties such as metamaterials, nano-mechanical systems, next-generation electronic, photonic, and acoustic devices, energy harvesting, optical information storage, and applications of phonon lasers in a variety of fields. The emergence of techniques for control of semiconductor properties and geometry has enabled engineers to design structures in which functionality is derived from controlling electron behavior. As manufacturing techniques have greatly expanded the list of available materials and the range of attainable length scales, similar opportunities now exist for designing devices whose functionality is derived from controlling phonon behavior. However, progress in this area is hampered by gaps in our knowledge of phonon transport across and along arbitrary interfaces, the scattering of phonons with crystal defects, interface roughness and mass-mixing, delocalized electrons/collective electronic excitations, and solid acoustic vibrations when these occur in structures with small physical dimensions. This book providesa comprehensive description of phonons and their interactions in systems with different dimensions and length scales. Theories and measurements of phonon interactions are described in relation to the design of materials with exotic properties such as metamaterials, nano-mechanical systems, next-generation electronic, photonic, and acoustic devices, energy harvesting, optical information storage, and applications of phonon lasers in a variety of fields."
This thesis unites the fields of optical atomic clocks and ultracold molecular science, laying the foundation for optical molecular measurements of unprecedented precision. Building upon optical manipulation techniques developed by the atomic clock community, this work delves into attaining surgical control of molecular quantum states. The thesis develops two experimental observables that one can measure with optical-lattice-trapped ultracold molecules: extremely narrow optical spectra, and angular distributions of photofragments that are ejected when the diatomic molecules are dissociated by laser light pulses. The former allows molecular spectroscopy approaching the level of atomic clocks, leading into molecular metrology and tests of fundamental physics. The latter opens the field of ultracold chemistry through observation of quantum effects such as matter-wave interference of photofragments and tunneling through reaction barriers. The thesis also describes a discovery of a new method of thermometry that can be used near absolute zero temperatures for particles lacking cycling transitions, solving a long-standing experimental problem in atomic and molecular physics.
This book discusses the development of Fano-based techniques and reveals the characteristic properties of various wave processes by studying interference phenomena. It explains that the interaction of discrete (localized) states with a continuum of propagation modes leads to Fano interference effects in transmission, and explores novel coherent effects such as bound states in the continuum accompanied by collapse of Fano resonance. Originating in atomic physics, Fano resonances have become one of the most appealing phenomena of wave scattering in optics, microwaves, and terahertz techniques. The generation of extremely strong and confined fields at a deep subwavelength scale, far beyond the diffraction limit, plays a central role in modern plasmonics, magnonics, and in photonic and metamaterial structures. Fano resonance effects take advantage of the coupling of these bound states with a continuum of radiative electromagnetic waves. With their unique physical properties and unusual combination of classical and quantum structures, Fano resonances have an application potential in a wide range of fields, from telecommunication to ultrasensitive biosensing, medical instrumentation and data storage. Including contributions by international experts and covering the essential aspects of Fano-resonance effects, including theory, modeling and design, proven and potential applications in practical devices, fabrication, characterization and measurement, this book enables readers to acquire the multifaceted understanding required for these multidisciplinary challenges.
An up-to-date overview of reflectometers used for optical spectroscopy of various kinds of liquids, ranging from well-known transparent liquids to "pathological" industrial liquids. The book reviews and explains basic materials for anyone wanting to get to know the theory, spectral analysis and modern devices needed for the measurement of refractive index and absorption of liquids. Moreover, the book gives an introduction to reflectivity from optically nonlinear liquids such as liquids containing nanoparticles.
This book covers the latest developments in capillary electrophoresis-mass spectrometry for the analysis of therapeutic proteins. The application of capillary electrophoresis-mass spectrometry (CE-MS) coupling technology in the analysis of recombinant therapeutic proteins is detailed thoroughly. Specific topics include recent developments in coupling capillary electrophoresis with mass spectrometry for the quality control of monoclonal antibody therapeutics, top-down analysis of monoclonal antibody using the CE-MS platform, and detection of host cell protein impurities. Comprehensive characterization of antibody-drug conjugates (ADCs) by coupling capillary electrophoresis with mass spectrometry is also covered. This is an ideal book for scientists in the life science and biopharmaceutical industry who are working on characterizing the PTMs of monoclonal antibodies, as well as graduate students and researchers in the separation science and biological mass spectrometry fields.
This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the state-of-the-art research that is being carried out in the field of ultrafast molecular science, from theoretical developments, through new phenomena induced by intense laser fields, to the latest techniques applied to the study of molecular dynamics.
Proceedings of the Eleventh Latin American Conference on the Applications of the Mossbauer Effect, La Plata, Argentina, 9-14 November 2008. The broad scope of the Applications of the Mossbauer Effect to interdisciplinary subjects makes this volume an outstanding source of information to researchers and graduate students, who will find the unique results of Mossbauer spectroscopy a valuable aid and complement to their research in conjunction with other techniques. In this volume, applications to mineralogy, catalysis, soil science, amorphous materials, nanoparticles, magnetic materials, nanotechnology, metallurgy, corrosion, and magnetism, have been put together in original works produced by invited speakers and different research teams across the continent.
The aim of this book is to provide the researcher with important sample preparation strategies in a wide variety of analyte molecules, specimens, methods, and biological applications requiring mass spectrometric analysis as a detection end-point. In this volume we have compiled the contributions from several laboratories which are employing mass spectrometry for biological analysis. With the latest inventions and introduction of highly sophisticated mass spectrometry equipment sample preparation becomes an extremely important bottleneck of biomedical analysis. We have a goal of giving the reader several successful examples of sample preparation, development and optimization, leading to the success in analytical steps and proper conclusions made at the end of the day. This book is structured as a compilation of contributed chapters ranging from protocols to research articles and reviews. The main philosophy of this volume is that sample preparation methods have to be optimized and validated for every project, for every sample type and for every downstream analytical technique.
This book is intended for both the undergraduate and postgraduate levels. The subject material deals with symmetry, starting from the basic and rudimental foundations of the concept and the depth of its applications. The presentation of the concepts and the related illustrations in the book are on semi-pedagogical lines and thus offer easy understanding to the reader. The book is designed with twelve well thought chapters, with each preceding chapter opening the gate for the development of the next thereby having a high degree of sequence.The first seven chapters are devoted to the indepth understanding of 'symmetry and group theory' of molecules and the last five chapters are developed on the aspects of how these formalisms are utilized for the 'structure, spectra and bonding' of molecules. The book also covers the essential basics of the group theory that are required for all sections of chemistry, and emphasizes the necessity of this theory to understand the theoretical and applied aspects of molecular spectroscopy. This text is the result of a long felt need for developing certain novel techniques for the teaching of this course. A 'Window-vision' has been provided in the book while presenting most of the chapters and 'Study Questions' are placed at the end of each chapter to help ensure understanding of the concepts. 'No more nightmares of group theory and spectroscopy' - is the ultimate purpose of this book.
This book covers the main ideas, methods, recent developments and applications of quantum-limit optical spectroscopy to quantum information, resolution spectroscopy, measurements beyond quantum limits, measurement of decoherence and entanglement. Quantum-limit spectroscopy lies at the frontier of current experimental and theoretical techniques, and is one of the areas of atomic spectroscopy where the quantization of the field is essential to predict and interpret the existing experimental results. Currently, there is an increasing interest in quantum and precision spectroscopy both theoretically and experimentally, due to a significant progress in trapping and cooling of single atoms and ions. This progress allows to explore in the most intimate detail the ways in which light interacts with atoms and to measure spectral properties and quantum effects with a large precision. Moreover, it allows to perform subtle tests of quantum mechanics on the single atom and single photon scale which were hardly even imaginable as ``thought experiments'' a few years ago.
This series provides an unequalled source of information on an area of chemistry that continues to grow in importance. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in the field, researchers will find this an invaluable source of information on current methods and applications. provides a critical review of the literature published up to late 2002. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.
Advances in electronics have pushed mankind to create devices, ranging from - credible gadgets to medical equipment to spacecraft instruments. More than that, modern society is getting used to-if not dependent on-the comfort, solutions, and astonishing amount of information brought by these devices. One ?eld that has continuously bene?tted from those advances is the radio frequency integrated c- cuit (RFIC) design, which in its turn has promoted countless bene?ts to the mankind as a payback. Wireless communications is one prominent example of what the - vances in electronics have enabled and their consequences to our daily life. How could anyone back in the eighties think of the possibilities opened by the wireless local area networks (WLANs) that can be found today in a host of places, such as public libraries, coffee shops, trains, to name just a few? How can a youngster, who lives this true WLAN experience nowadays, imagine a world without it? This book dealswith the design oflinearCMOS RF PowerAmpli?ers(PAs). The RF PA is a very important part of the RF transceiver, the device that enables wireless communications. Two important aspects that are key to keep the advances in RF PA design at an accelerate pace are treated: ef?ciency enhancement and frequen- tunable capability. For this purpose, the design of two different integrated circuits realizedina0. 11umtechnologyispresented, eachoneaddressingadifferentaspect. With respect to ef?ciency enhancement, the design of a dynamic supply RF power ampli?er is treated, making up the material of Chaps. 2 to 4."
This book explores the conversion for solar energy into renewable liquid fuels through electrochemical reactions. The first section of the book is devoted to the theoretical fundamentals of solar fuels production, focusing on the surface properties of semiconductor materials in contact with aqueous solutions and the reaction mechanisms. The second section describes a collection of current, relevant characterization techniques, which provide essential information of the band structure of the semiconductors and carrier dynamics at the interface semiconductor. The third, and last section comprises the most recent developments in materials and engineered structures to optimize the performance of solar-to-fuel conversion devices.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
Reflecting the expanding field's need for reliable protocols, Fluorescence Spectroscopy and Microscopy: Methods and Protocols offers techniques from a worldwide team of experts on this versatile and vital subject. The topics covered fall into four broad categories: steady-state fluorescence spectroscopy, time-resolved fluorescence spectroscopy, fluorescent probe development, and the various sub-categories of fluorescence microscopy, such as fluorescence recovery after photobleaching (FRAP), live cell FRET imaging (FRETim), fluorescence lifetime imaging (FLIM), fluorescence fluctuation spectroscopy (FFS), and single-molecule fluorescence spectroscopy (smFS). Written as a part of the popular Methods in Molecular Biology series, chapters include the kind of unambiguous detail and key implementation advice that proves essential for successful results. Comprehensive and practical, Fluorescence Spectroscopy and Microscopy: Methods and Protocols aims to guide both 'novice' and established scientists toward furthering their research with these invaluable techniques.
This book, a consecutive contribution to the series Challenges and Advances in Computational Chemistry and Physics, focuses on understanding the photoinduced processes in biological systems. Understanding and fine control of light fate in molecules is vital for the progress of society and environmental safety. Light induced changes of various physico-chemical and spectroscopic properties in nucleic acids and proteins is the basis of fundamental biological events such as vision, DNA photodamage or photosensing. The investigation of these processes is challenging to both theoretical and experimental studies. This volume encompasses the quantum mechanics/molecular mechanics theory in several subfields, including: advanced computational methods for nucleic acids and proteins systems; dynamics, spectroscopic and physico-chemical properties of biological photoreceptors; DNA photodamage. This book is of interest to readers in both fundamental and application-oriented research by overviewing recent achievements in computational modeling of excited states in nucleic acids and proteins.
This volume provides an overview of the development and scope of molecular biophysics and in-depth discussions of the major experimental methods that enable biological macromolecules to be studied at atomic resolution. It also reviews the physical chemical concepts that are needed to interpret the experimental results and to understand how the structure, dynamics, and physical properties of biological macromolecules enable them to perform their biological functions. Reviews of research on three disparate biomolecular machines-DNA helicases, ATP synthases, and myosin--illustrate how the combination of theory and experiment leads to new insights and new questions.
This book gives a detailed account of the holistic research carried out on the analytical data obtained historically on the products of the Nantgarw and Swansea porcelain manufactories which existed for a few years only during the second decade of the 19th Century. A background to the establishment of the two factories, which are linked through the persons of the enigmatic William Billingsley and his kiln manager, Samuel Walker, involves the sourcing of their raw materials and problems associated with the manufacture and distribution of the finished products. A description of the minerals and additives used in porcelain production is recounted to set the scene for the critical evaluation of the comprehensive analytical data which have been published on Nantgarw and Swansea porcelains. For the first time, the author has adopted a nondestructive technique, Raman spectroscopy, to interrogate perfect samples of Nantgarw and Swansea porcelain, as well as a selection of shards from an archaeological excavation carried out at a waste dump at the Nantgarw China Works site. Following these experiments, several questions relating to the porcelain bodies of Swansea and Nantgarw china can be answered and a protocol established for the preliminary evaluation of items of suspect attribution to confirm or not the correctness of their assignment to these Welsh porcelain factories. |
![]() ![]() You may like...
Photoelectron Spectroscopy - Bulk and…
Shigemasa Suga, Akira Sekiyama, …
Hardcover
R3,914
Discovery Miles 39 140
Metrological Infrastructure
Beat Jeckelmann, Robert Edelmaier
Hardcover
R4,345
Discovery Miles 43 450
Electron Paramagnetic Resonance - Volume…
Victor Chechik, Damien M. Murphy, …
Hardcover
R12,234
Discovery Miles 122 340
Mass Spectrometry - Future Perceptions…
Ganesh Shamrao Kamble
Hardcover
R3,402
Discovery Miles 34 020
Electron Paramagnetic Resonance - Volume…
Victor Chechik, Damien M. Murphy
Hardcover
R12,222
Discovery Miles 122 220
Diagnostic of Concrete Samples Affected…
Antonio C. Azevedo, Fernando A.N. Silva, …
Hardcover
R4,208
Discovery Miles 42 080
Mass Spectrometry in Biopharmaceutical…
Igor A. Kaltashov, Shunhai Wang, …
Hardcover
R2,962
Discovery Miles 29 620
|