![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
This monograph provides an introduction and a survey of recent results in potential theory with respect to the Laplace-Beltrami operator D in several complex variables, with special emphasis on the unit ball in Cn. Topics covered include Poisson-Szegoe integrals on the ball, the Green's function for D and the Riesz decomposition theorem for invariant subharmonic functions. The extension to the ball of the classical Fatou theorem on non-tangible limits of Poisson integrals, and Littlewood's theorem on the existence of radial limits of subharmonic functions are covered in detail. The monograph also contains recent results on admissible and tangential boundary limits of Green potentials, and Lp inequalities for the invariant gradient of Green potentials. Applications of some of the results to Hp spaces, and weighted Bergman and Dirichlet spaces of invariant harmonic functions are included. The notes are self-contained, and should be accessible to anyone with some basic knowledge of several complex variables.
Complex Analysis is the powerful fusion of the complex numbers (involving the 'imaginary' square root of -1) with ordinary calculus, resulting in a tool that has been of central importance to science for more than 200 years. This book brings this majestic and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. The 501 diagrams of the original edition embodied geometrical arguments that (for the first time) replaced the long and often opaque computations of the standard approach, in force for the previous 200 years, providing direct, intuitive, visual access to the underlying mathematical reality. This new 25th Anniversary Edition introduces brand-new captions that fully explain the geometrical reasoning, making it possible to read the work in an entirely new way—as a highbrow comic book!
Aimed at graduate students, this textbook provides an accessible and comprehensive introduction to operator theory. Rather than discuss the subject in the abstract, this textbook covers the subject through twenty examples of a wide variety of operators, discussing the norm, spectrum, commutant, invariant subspaces, and interesting properties of each operator. The text is supplemented by over 600 end-of-chapter exercises, designed to help the reader master the topics covered in the chapter, as well as providing an opportunity to further explore the vast operator theory literature. Each chapter also contains well-researched historical facts which place each chapter within the broader context of the development of the field as a whole.
The interaction between ergodic theory and discrete groups has a long history and much work was done in this area by Hedlund, Hopf and Myrberg in the 1930s. There has been a great resurgence of interest in the field, due in large measure to the pioneering work of Dennis Sullivan. Tools have been developed and applied with outstanding success to many deep problems. The ergodic theory of discrete groups has become a substantial field of mathematical research in its own right, and it is the aim of this book to provide a rigorous introduction from first principles to some of the major aspects of the theory. The particular focus of the book is on the remarkable measure supported on the limit set of a discrete group that was first developed by S. J. Patterson for Fuchsian groups, and later extended and refined by Sullivan.
An elementary account of many aspects of classical complex function theory, including Mobius transformations, elliptic functions, Riemann surfaces, Fuchsian groups and modular functions. The book is based on lectures given to advanced undergraduate students and is well suited as a textbook for a second course in complex function theory.
This self-contained and relatively elementary introduction to functions of several complex variables and complex (especially compact) manifolds is intended to be a synthesis of those topics and a broad introduction to the field. Part I is suitable for advanced undergraduates and beginning postgraduates whilst Part II is written more for the graduate student. The work as a whole will be useful to professional mathematicians or mathematical physicists who wish to acquire a working knowledge of this area of mathematics. Many exercises have been included and indeed they form an integral part of the text. The prerequisites for understanding Part I would be met by any mathematics student with a first degree and together the two parts provide an introduction to the more advanced works in the subject.
Formal verification increasingly has become recognized as an answer to the problem of how to create ever more complex control systems, which nonetheless are required to behave reliably. To be acceptable in an industrial setting, formal verification must be highly algorithmic; to cope with design complexity, it must support a top-down design methodology that leads from an abstract design to its detailed implementation. That combination of requirements points directly to the widely recognized solution of automata-theoretic verification, on account of its expressiveness, computational complexity, and perhaps general utility as well. This book develops the theory of automata-theoretic verification from its foundations, with a focus on algorithms and heuristics to reduce the computational complexity of analysis. It is suitable as a text for a one-or two-semester graduate course, and is recommended reading for anyone planning to use a verification tool, such as COSPAN or SMV. An extensive bibliography that points to the most recent sources, and extensive discussions of methodology and comparisons with other techniques, make this a useful resource for research or verification tool development, as well. Originally published in 1995. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This volume contains a collection of research papers dedicated to Hans Grauert on the occasion of his seventieth birthday. Hans Grauert is a pioneer in modern complex analysis, continuing the il lustrious German tradition in function theory of several complex variables of Weierstrass, Behnke, Thullen, Stein, Siegel, and many others. When Grauert came on the scene in the early 1950's, function theory was going through a revolutionary period with the geometric theory of complex spaces still in its embryonic stage. A rich theory evolved with the joint efforts of many great mathematicians including Oka, Kodaira, Cartan, and Serre. The Car tan Seminar in Paris and the Kodaira Seminar provided important venues an for its development. Grauert, together with Andreotti and Remmert, took active part in the latter. In his career he has nurtured a great number of his own doctoral students as well as other young mathematicians in his field from allover the world. For a couple of decades his work blazed the trail and set the research agenda in several complex variables worldwide. Among his many fundamentally important contributions, which are too numerous to completely enumerate here, are: 1. The complete clarification of various notions of complex spaces. 2. The solution of the general Levi problem and his work on pseudo convexity for general manifolds. 3. The theory of exceptional analytic sets. 4. The Oka principle for holomorphic bundles. 5. The proof of the Mordell conjecture for function fields. 6. The direct image theorem for coherent sheaves."
Complex analysis, more than almost any other undergraduate topic in mathematics, runs the full pure/applied gamut from the most subtle, difficult, and ingenious proofs to the most direct, hands-on, engineering-based applications. This creates challenges for the instructor as much as for the very wide range of students whose various programmes require a secure grasp of complex analysis. Its techniques are indispensable to many, but skill in the use of a mathematical tool is hazardous and fallible without a sound understanding of why and when that tool is the right one to pick up. This kind of understanding develops only by combining careful exploration of ideas, analysis of proofs, and practice across a range of exercises. Integration with Complex Numbers: A Primer on Complex Analysis offers a reader-friendly contemporary balance between idea, proof, and practice, informed by several decades of classroom experience and a seasoned understanding of the backgrounds, motivation, and competing time pressures of today's student cohorts. To achieve its aim of supporting and sustaining such cohorts through those aspects of complex analysis that they encounter in first and second-year study, it also balances competing needs to be self-contained, comprehensive, accessible, and engaging - all in sufficient but not in excessive measures. In particular, it begins where most students are likely to be, and invests the time and effort that are required in order to deliver accessibility and introductory gradualness.
Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it will become an essential resource for graduate students and researchers. Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The authors give the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. They also indicate that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on quotients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject.
The theory of Hardy spaces is a cornerstone of modern analysis. It combines techniques from functional analysis, the theory of analytic functions and Lesbesgue integration to create a powerful tool for many applications, pure and applied, from signal processing and Fourier analysis to maximum modulus principles and the Riemann zeta function. This book, aimed at beginning graduate students, introduces and develops the classical results on Hardy spaces and applies them to fundamental concrete problems in analysis. The results are illustrated with numerous solved exercises that also introduce subsidiary topics and recent developments. The reader's understanding of the current state of the field, as well as its history, are further aided by engaging accounts of important contributors and by the surveys of recent advances (with commented reference lists) that end each chapter. Such broad coverage makes this book the ideal source on Hardy spaces.
Dieses Arbeitsbuch enthalt die Aufgaben, Hinweise, Loesungen und Loesungswege zu allen sechs Teilen des Lehrbuchs Arens et al., Mathematik. Die Inhalte des Buchs stehen als PDF-Dateien auf der Website des Verlags zur Verfugung. Durch die stufenweise Offenlegung der Loesungen ist das Werk bestens geeignet zum Selbststudium, zur Vorlesungsbegleitung und als Prufungsvorbereitung. Inhaltlich spannt sich der Bogen von elementaren Grundlagen uber die Analysis einer Veranderlichen, der linearen Algebra, der Analysis mehrerer Veranderlicher bis hin zu fortgeschrittenen Themen der Analysis, die fur die Anwendung besonders wichtig sind, wie partielle Differenzialgleichungen, Fourierreihen und Laplacetransformationen. Auch eine Vielzahl von Aufgaben zur Wahrscheinlichkeitsrechnung und Statistik ist enthalten.
This book presents many of the main developments of the past two decades in the study of real submanifolds in complex space, providing crucial background material for researchers and advanced graduate students. The techniques in this area borrow from real and complex analysis and partial differential equations, as well as from differential, algebraic, and analytical geometry. In turn, these latter areas have been enriched over the years by the study of problems in several complex variables addressed here. The authors, M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, include extensive preliminary material to make the book accessible to nonspecialists. One of the most important topics that the authors address here is the holomorphic extension of functions and mappings that satisfy the tangential Cauchy-Riemann equations on real submanifolds. They present the main results in this area with a novel and self-contained approach. The book also devotes considerable attention to the study of holomorphic mappings between real submanifolds, and proves finite determination of such mappings by their jets under some optimal assumptions. The authors also give a thorough comparison of the various nondegeneracy conditions for manifolds and mappings and present new geometric interpretations of these conditions. Throughout the book, Cauchy-Riemann vector fields and their orbits play a central role and are presented in a setting that is both general and elementary.
This book is a history of complex function theory from its origins to 1914, when the essential features of the modern theory were in place. It is the first history of mathematics devoted to complex function theory, and it draws on a wide range of published and unpublished sources. In addition to an extensive and detailed coverage of the three founders of the subject Cauchy, Riemann, and Weierstrass it looks at the contributions of authors from d Alembert to Hilbert, and Laplace to Weyl. Particular chapters examine the rise and importance of elliptic function theory, differential equations in the complex domain, geometric function theory, and the early years of complex function theory in several variables. Unique emphasis has been devoted to the creation of a textbook tradition in complex analysis by considering some seventy textbooks in nine different languages. The book is not a mere sequence of disembodied results and theories, but offers a comprehensive picture of the broad cultural and social context in which the main actors lived and worked by paying attention to the rise of mathematical schools and of contrasting national traditions. The book is unrivaled for its breadth and depth, both in the core theory and its implications for other fields of mathematics. It documents the motivations for the early ideas and their gradual refinement into a rigorous theory. "
This user-friendly textbook introduces complex analysis at the beginning graduate or advanced undergraduate level. Unlike other textbooks, it follows Weierstrass' approach, stressing the importance of power series expansions instead of starting with the Cauchy integral formula, an approach that illuminates many important concepts. This view allows readers to quickly obtain and understand many fundamental results of complex analysis, such as the maximum principle, Liouville's theorem, and Schwarz's lemma. The book covers all the essential material on complex analysis, and includes several elegant proofs that were recently discovered. It includes the zipper algorithm for computing conformal maps, as well as a constructive proof of the Riemann mapping theorem, and culminates in a complete proof of the uniformization theorem. Aimed at students with some undergraduate background in real analysis, though not Lebesgue integration, this classroom-tested textbook will teach the skills and intuition necessary to understand this important area of mathematics.
The present monograph grew out of the fifth set of Hermann Weyl Lectures, given by Professor Griffiths at the Institute for Advanced Study, Princeton, in fall 1974. In Chapter 1 the author discusses Emile Borel's proof and the classical Jensen theorem, order of growth of entire analytic sets, order functions for entire holomorphic mappings, classical indicators of orders of growth, and entire functions and varieties of finite order. Chapter 2 is devoted to the appearance of curvature, and Chapter 3 considers the defect relations. The author considers the lemma on the logarithmic derivative, R. Nevanlinna's proof of the defect relation, and refinements of the classical case.
Now available in paperback, this successful radical approach to complex analysis replaces the standard calculational arguments with new geometric ones. With several hundred diagrams, and far fewer prerequisites than usual, this is the first visual intuitive introduction to complex analysis. Although designed for use by undergraduates in mathematics and science, the novelty of the approach will also interest professional mathematicians.
Vast holdings and assessment of consumer data by large companies are not new phenomena. Firms' ability to leverage the data to reach customers in targeted campaigns and gain market share is, and on an unprecedented scale. Major companies have moved from serving as data or inventory storehouses, suppliers, and exchange mechanisms to monetizing their data and expanding the products they offer. Such changes have implications for both firms and consumers in the coming years. In Success with Big Data, Russell Walker investigates the use of internal Big Data to stimulate innovations for operational effectiveness, and the ways in which external Big Data is developed for gauging, or even prompting, customer buying decisions. Walker examines the nature of Big Data, the novel measures they create for market activity, and the payoffs they can offer from the connectedness of the business and social world. With case studies from Apple, Netflix, Google, and Amazon, Walker both explores the market transformations that are changing perceptions of Big Data, and provides a framework for assessing and evaluating Big Data. Although the world appears to be moving toward a marketplace where consumers will be able to "pull" offers from firms, rather than simply receiving offers, Walker observes that such changes will require careful consideration of legal and unspoken business practices as they affect consumer privacy. Rigorous and meticulous, Success with Big Data is a valuable resource for graduate students and professionals with an interest in Big Data, digital platforms, and analytics.
This book is a sequel to Lectures on Complex Analytic Varieties: The Local Paranwtrization Theorem (Mathematical Notes 10, 1970). Its unifying theme is the study of local properties of finite analytic mappings between complex analytic varieties; these mappings are those in several dimensions that most closely resemble general complex analytic mappings in one complex dimension. The purpose of this volume is rather to clarify some algebraic aspects of the local study of complex analytic varieties than merely to examine finite analytic mappings for their own sake. Originally published in 1970. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This book collects the proceedings of a series of conferences dedicated to birational geometry of Fano varieties held in Moscow, Shanghai and Pohang The conferences were focused on the following two related problems: * existence of Kahler-Einstein metrics on Fano varieties * degenerations of Fano varieties on which two famous conjectures were recently proved. The first is the famous Borisov-Alexeev-Borisov Conjecture on the boundedness of Fano varieties, proved by Caucher Birkar (for which he was awarded the Fields medal in 2018), and the second one is the (arguably even more famous) Tian-Yau-Donaldson Conjecture on the existence of Kahler-Einstein metrics on (smooth) Fano varieties and K-stability, which was proved by Xiuxiong Chen, Sir Simon Donaldson and Song Sun. The solutions for these longstanding conjectures have opened new directions in birational and Kahler geometries. These research directions generated new interesting mathematical problems, attracting the attention of mathematicians worldwide. These conferences brought together top researchers in both fields (birational geometry and complex geometry) to solve some of these problems and understand the relations between them. The result of this activity is collected in this book, which contains contributions by sixty nine mathematicians, who contributed forty three research and survey papers to this volume. Many of them were participants of the Moscow-Shanghai-Pohang conferences, while the others helped to expand the research breadth of the volume - the diversity of their contributions reflects the vitality of modern Algebraic Geometry.
Ziel dieses Lehrbuches ist es, einen verstandlichen, moeglichst direkten und in sich geschlossenen Zugang zu wichtigen Ergebnissen der mehrdimensionalen Funktionentheorie zu geben. Hierbei fuhrt der Weg von elementaren Eigenschaften holomorpher Funktionen uber analytische Mengen und Holomorphiebereiche bis hin zum Levi-Problem. Ein abschliessendes Kapitel enthalt mit der Konstruktion des mehrdimensionalen holomorphen Funktionalkalkuls nach Shilov, Waelbroeck und Arens-Calderon und dem Satz von Arens-Royden wichtige Anwendungen auf die Theorie komplexer Banachalgebren. Zahlreiche UEbungsaufgaben erganzen den theoretischen Teil. Vorausgesetzt wird nur der Inhalt der Grundvorlesungen in Analysis und einer ublichen einsemestrigen Vorlesung uber Funktionentheorie einer komplexen Veranderlichen. Das Buch richtet sich besonders an fortgeschrittene Bachelorstudierende oder Studierende eines Masterstudienganges und eignet sich bestens als Begleitlekture zu einer Vorlesung oder auch zum Selbststudium.
The guide that helps students study faster, learn better, and get top grades More than 40 million students have trusted Schaum's to help them study faster, learn better, and get top grades. Now Schaum's is better than ever-with a new look, a new format with hundreds of practice problems, and completely updated information to conform to the latest developments in every field of study. Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores! Schaum's Outlines-Problem Solved.
This textbook provides an accessible introduction to the rich and beautiful area of hyperplane arrangement theory, where discrete mathematics, in the form of combinatorics and arithmetic, meets continuous mathematics, in the form of the topology and Hodge theory of complex algebraic varieties. The topics discussed in this book range from elementary combinatorics and discrete geometry to more advanced material on mixed Hodge structures, logarithmic connections and Milnor fibrations. The author covers a lot of ground in a relatively short amount of space, with a focus on defining concepts carefully and giving proofs of theorems in detail where needed. Including a number of surprising results and tantalizing open problems, this timely book also serves to acquaint the reader with the rapidly expanding literature on the subject. Hyperplane Arrangements will be particularly useful to graduate students and researchers who are interested in algebraic geometry or algebraic topology. The book contains numerous exercises at the end of each chapter, making it suitable for courses as well as self-study.
This volume originated in talks given in Cortona at the conference "Geometric aspects of harmonic analysis" held in honor of the 70th birthday of Fulvio Ricci. It presents timely syntheses of several major fields of mathematics as well as original research articles contributed by some of the finest mathematicians working in these areas. The subjects dealt with are topics of current interest in closely interrelated areas of Fourier analysis, singular integral operators, oscillatory integral operators, partial differential equations, multilinear harmonic analysis, and several complex variables. The work is addressed to researchers in the field. |
![]() ![]() You may like...
The Blue Economy Handbook of the Indian…
V N Attri, Narnia Bohler-Mulleris
Paperback
Teaching Statistics - A Bag of Tricks
Andrew Gelman, Deborah Nolan
Hardcover
R3,376
Discovery Miles 33 760
The Political Dynamics of School Choice…
Lance D. Fusarelli
Hardcover
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R7,630
Discovery Miles 76 300
Troubleshooting with the Windows…
Mark Russinovich, Aaron Margosis
Paperback
Conditional Function Control of Aircraft
Andrey Vyacheslavovich Yakovlev, Andrey Sergeevich Istomin, …
Hardcover
R4,314
Discovery Miles 43 140
|