![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
The idea of this book originated in the works presented at the First Latinamerican Conference on Mathematics in Industry and Medicine, held in Buenos Aires, Argentina, from November 27 to December 1, 1995. A variety of topics were discussed at this meeting. A large percentage of the papers focused on Wavelet and Harmonic Analysis. The theory and applications of this topic shown at the Conference were interesting enough to be published. Based on that we selected some works which make the core of this book. Other papers are contributions written by invited experts in the field to complete the presentation. All the works were written after the Conference. The purpose of this book is to present recent results as well as theo retical applied aspects of the subject. We have decided not to include a section devoted to the theoretical foundations of wavelet methods for non specialists. There are excellent introductions already available, for example, Chapter one in Wavelets in Medicine and Biology, edited by A. Aldroubi and M. Unser, 1996, or some of the references cited in the chapter."
This text offers a collection of survey and research papers by leading specialists in the field documenting the current understanding of higher dimensional varieties. Recently, it has become clear that ideas from many branches of mathematics can be successfully employed in the study of rational and integral points. This book will be very valuable for researchers from these various fields who have an interest in arithmetic applications, specialists in arithmetic geometry itself, and graduate students wishing to pursue research in this area.
The Heisenberg group plays an important role in several branches of mathematics, such as representation theory, partial differential equations, number theory, several complex variables and quantum mechanics. This monograph deals with various aspects of harmonic analysis on the Heisenberg group, which is the most commutative among the non-commutative Lie groups, and hence gives the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis. The aim of this text is to demonstrate how the standard results of abelian harmonic analysis take shape in the non-abelian setup of the Heisenberg group. Thangavelu's exposition is clear and well developed, and leads to several problems worthy of further consideration. Any reader who is interested in pursuing research on the Heisenberg group will find this unique and self-contained text invaluable.
This monograph is devoted to the study of Koethe-Bochner function spaces, an active area of research at the intersection of Banach space theory, harmonic analysis, probability, and operator theory. A number of significant results---many scattered throughout the literature---are distilled and presented here, giving readers a comprehensive view of the subject from its origins in functional analysis to its connections to other disciplines. Considerable background material is provided, and the theory of Koethe-Bochner spaces is rigorously developed, with a particular focus on open problems. Extensive historical information, references, and questions for further study are included; instructive examples and many exercises are incorporated throughout. Both expansive and precise, this book's unique approach and systematic organization will appeal to advanced graduate students and researchers in functional analysis, probability, operator theory, and related fields.
The purpose of this book, first published in 1939, updated in 1953, is to give a treatment of the so-called operational method and to illustrate its application to problems in various branches of technology. It is written primarily for technologists who use mathematics in solving technical problems in industrial and applied research work, and the treatment is sufficiently rigorous for their needs. The theory of the complex variable and of transform calculus occupy the first half of the book. A further third of the book describes the application of this theory to problems arising in electrical circuits; vibrational systems; aeroplane dynamics; the deflexion of beams; radio and television receivers; the solution of partial differential equations; electrical transmission limes; electrical wave filters; solenoids with metal cores; condenser microphones; loud speaker horns and the absorption of moisture. The final part contains over 100 problems - many with hints for their solution - appendices and references.
Few books on the subject of Riemann surfaces cover the relatively modern theory of dessins d'enfants (children's drawings), which was launched by Grothendieck in the 1980s and is now an active field of research. In this 2011 book, the authors begin with an elementary account of the theory of compact Riemann surfaces viewed as algebraic curves and as quotients of the hyperbolic plane by the action of Fuchsian groups of finite type. They then use this knowledge to introduce the reader to the theory of dessins d'enfants and its connection with algebraic curves defined over number fields. A large number of worked examples are provided to aid understanding, so no experience beyond the undergraduate level is required. Readers without any previous knowledge of the field of dessins d'enfants are taken rapidly to the forefront of current research.
M. Brelot: Historical introduction.- H. Bauer: Harmonic spaces and associated Markov processes.- J.M. Bony: Op rateurs elliptiques d g n r?'s associ?'s aux axiomatiques de la theorie du potentiel.- J. Deny: M thodes hilbertiennes en theory du potentiel.- J.L. Doob: Martingale theory Potential theory.- G. Mokobodzki: C nes de potentiels et noyaux subordonn s.
The subject of special functions is often presented as a collection of disparate results, which are rarely organised in a coherent way. This book answers the need for a different approach to the subject. The authors' main goals are to emphasise general unifying principles coherently and to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more, including chapters on discrete orthogonal polynomials and elliptic functions. The authors show how a very large part of the subject traces back to two equations - the hypergeometric equation and the confluent hypergeometric equation - and describe the various ways in which these equations are canonical and special. Providing ready access to theory and formulas, this book serves as an ideal graduate-level textbook as well as a convenient reference.
This book provides new research on the dynamics, algorithms and synchronization of chaotic systems. Chapter One introduces some nonlinear techniques for the synchronization of a class of chaotic oscillator under the framework of observer design from control theory. Chapter Two discusses in detail the application of a novel multi-domain spectral collocation approach for finding solutions of ordinary differential equations that exhibit general chaotic behaviour. Chapter Three designs an adaptive state feedback controller guaranteeing the asymptotic stability followed by the synchronization of the nonlinear discrete-time error of two identical hyper chaotic systems.
Riemann surfaces is a thriving area of mathematics with applications to hyperbolic geometry, complex analysis, fractal geometry, conformal dynamics, discrete groups, geometric group theory, algebraic curves and their moduli, various kinds of deformation theory, coding, thermodynamic formalism, and topology of three-dimensional manifolds. This collection of articles, authored by leading authorities in the field, comprises 16 expository essays presenting original research and expert surveys of important topics related to Riemann surfaces and their geometry. It complements the body of recorded research presented in the primary literature by broadening, re-working and extending it in a more focused and less formal framework, and provides a valuable commentary on contemporary work in the subject. An introductory section sets the scene and provides sufficient background to allow graduate students and research workers from other related areas access to the field.
This book provides a detailed introduction to recent developments in the theory of linear differential systems and integrable total differential systems. Starting from the basic theory of linear ordinary differential equations and integrable systems, it proceeds to describe Katz theory and its applications, extending it to the case of several variables. In addition, connection problems, deformation theory, and the theory of integral representations are comprehensively covered. Complete proofs are given, offering the reader a precise account of the classical and modern theory of linear differential equations in the complex domain, including an exposition of Pfaffian systems and their monodromy problems. The prerequisites are a course in complex analysis and the basics of differential equations, topology and differential geometry. This book will be useful for graduate students, specialists in differential equations, and for non-specialists who want to use differential equations.
The theory of Hardy spaces has close connections to many branches of mathematics including Fourier analysis, harmonic analysis, singular integrals, potential theory and operator theory, and has found essential applications in robust control engineering. For each application, the ability to represent elements of these classes by series or integral formulas is of utmost importance. This self-contained text provides an introduction to a wide range of representation theorems and provides a complete description of the representation theorems with direct proofs for both classes of Hardy spaces: Hardy spaces of the open unit disc and Hardy spaces of the upper half plane. With over 300 exercises, many with accompanying hints, this book is ideal for those studying Advanced Complex Analysis, Function Theory or Theory of Hardy Spaces. Advanced undergraduate and graduate students will find the book easy to follow, with a logical progression from basic theory to advanced research.
Originally published in 1966, this well-written and still-cited text covers Fourier analysis, a foundation of science and engineering. Many modern textbooks are filled with specialized terms and equations that may be confusing, but this book uses a friendly, conversational tone to clarify the material and engage the reader. The author meticulously develops the topic and uses 161 problems integrated into the text to walk the student down the simplest path to a solution.
Professor Caratheodory sets out the basic theory of conformal representations as simply as possible. In the early chapters on Mobius' and other elementary transformations and on non-Euclidean geometry, he deals with those elementary subjects that are necessary for an understanding of the general theory discussed in the remaining chapters.
This book provides an introduction to some aspects of the analytic theory of automorphic forms on G=SL2(R) or the upper-half plane X, with respect to a discrete subgroup G of G of finite covolume. The point of view is inspired by the theory of infinite dimensional unitary representations of G; this is introduced in the last sections, making this connection explicit. The topics treated include the construction of fundamental domains, the notion of automorphic form on G\G and its relationship with the classical automorphic forms on X, Poincare series, constant terms, cusp forms, finite dimensionality of the space of automorphic forms of a given type, compactness of certain convolution operators, Eisenstein series, unitary representations of G, and the spectral decomposition of L2 (G\G). The main prerequisites are some results in functional analysis (reviewed, with references) and some familiarity with the elementary theory of Lie groups and Lie algebras. Graduate students and researchers in analytic number theory will find much to interest them in this book.
Between 1814 and 1831, the great French mathematician A. L. Cauchy created practically single-handedly a new branch of pure mathematics. Complex function theory was and remains of central importance, and its creation marked the start of one of the most exciting periods in the development of mathematics. In this book Dr Smithies analyses the process whereby Cauchy created the basic structure of complex analysis, describing first the eighteenth-century background before proceeding to examine the stages of Cauchy's own work, culminating in the proof of the residue theorem and his work on expansions in power series. Smithies describes how Cauchy overcame difficulties including false starts and contradictions brought about by over-ambitious assumptions, as well as the improvements that came about as the subject developed in Cauchy's hands. Controversies associated with the birth of complex function theory are described in detail. Throughout, new light is thrown on Cauchy's thinking during this watershed period. This book makes use of the whole spectrum of available original sources; it will be recognised as the authoritative work on the creation of complex function theory.
The first edition of this well known book was noted for its clear and accessible exposition of the basic theory of Hardy spaces from the concrete point of view (in the unit circle and the half plane). The intention was to give the reader, assumed to know basic real and complex variable theory and a little functional analysis, a secure foothold in the basic theory, and to understand its applications in other areas. For this reason, emphasis is placed on methods and the ideas behind them rather than on the accumulation of as many results as possible. The second edition retains that intention, but the coverage has been extended. The author has included two appendices by V. P. Havin, on Peter Jones' interpolation formula, and Havin's own proof of the weak sequential completeness of L1/H1(0); in addition, numerous amendments, additions and corrections have been made throughout.
Detailing the main methods in the theory of involutive systems of complex vector fields this book examines the major results from the last twenty five years in the subject. One of the key tools of the subject - the Baouendi-Treves approximation theorem - is proved for many function spaces. This in turn is applied to questions in partial differential equations and several complex variables. Many basic problems such as regularity, unique continuation and boundary behaviour of the solutions are explored. The local solvability of systems of partial differential equations is studied in some detail. The book provides a solid background for others new to the field and also contains a treatment of many recent results which will be of interest to researchers in the subject.
The Riemann zeta function is one of the most studied objects in mathematics, and is of fundamental importance. In this book, based on his own research, Professor Motohashi shows that the function is closely bound with automorphic forms and that many results from there can be woven with techniques and ideas from analytic number theory to yield new insights into, and views of, the zeta function itself. The story starts with an elementary but unabridged treatment of the spectral resolution of the non-Euclidean Laplacian and the trace formulas. This is achieved by the use of standard tools from analysis rather than any heavy machinery, forging a substantial aid for beginners in spectral theory as well. These ideas are then utilized to unveil an image of the zeta-function, first perceived by the author, revealing it to be the main gem of a necklace composed of all automorphic L-functions. In this book, readers will find a detailed account of one of the most fascinating stories in the development of number theory, namely the fusion of two main fields in mathematics that were previously studied separately.
This textbook is an introduction to the classical theory of functions of a complex variable. The author's aim is to explain the basic theory in an easy to understand and careful way. He emphasizes geometrical considerations, and, to avoid topological difficulties associated with complex analysis, begins by deriving Cauchy's integral formula in a topologically simple case and then deduces the basic properties of continuous and differentiable functions. The remainder of the book deals with conformal mappings, analytic continuation, Riemann's mapping theorem, Riemann surfaces and analytic functions on a Riemann surface. The book is profusely illustrated and includes many examples. Problems are collected together at the end of the book. It should be an ideal text for either a first course in complex analysis or more advanced study.
In its first six chapters this 2006 text seeks to present the basic ideas and properties of the Jacobi elliptic functions as an historical essay, an attempt to answer the fascinating question: 'what would the treatment of elliptic functions have been like if Abel had developed the ideas, rather than Jacobi?' Accordingly, it is based on the idea of inverting integrals which arise in the theory of differential equations and, in particular, the differential equation that describes the motion of a simple pendulum. The later chapters present a more conventional approach to the Weierstrass functions and to elliptic integrals, and then the reader is introduced to the richly varied applications of the elliptic and related functions. Applications spanning arithmetic (solution of the general quintic, the functional equation of the Riemann zeta function), dynamics (orbits, Euler's equations, Green's functions), and also probability and statistics, are discussed.
This up-to-date introduction to Griffiths' theory of period maps and period domains focusses on algebraic, group-theoretic and differential geometric aspects. Starting with an explanation of Griffiths' basic theory, the authors go on to introduce spectral sequences and Koszul complexes that are used to derive results about cycles on higher-dimensional algebraic varieties such as the Noether-Lefschetz theorem and Nori's theorem. They explain differential geometric methods, leading up to proofs of Arakelov-type theorems, the theorem of the fixed part and the rigidity theorem. They also use Higgs bundles and harmonic maps to prove the striking result that not all compact quotients of period domains are Kahler. This thoroughly revised second edition includes a new third part covering important recent developments, in which the group-theoretic approach to Hodge structures is explained, leading to Mumford-Tate groups and their associated domains, the Mumford-Tate varieties and generalizations of Shimura varieties.
Even the simplest singularities of planar curves, e.g. where the curve crosses itself, or where it forms a cusp, are best understood in terms of complex numbers. The full treatment uses techniques from algebra, algebraic geometry, complex analysis and topology and makes an attractive chapter of mathematics, which can be used as an introduction to any of these topics, or to singularity theory in higher dimensions. This book is designed as an introduction for graduate students and draws on the author's experience of teaching MSc courses; moreover, by synthesising different perspectives, he gives a novel view of the subject, and a number of new results.
This book presents the extensions to the quaternionic setting of some of the main approximation results in complex analysis. It also includes the main inequalities regarding the behavior of the derivatives of polynomials with quaternionic cofficients. With some few exceptions, all the material in this book belongs to recent research of the authors on the approximation of slice regular functions of a quaternionic variable. The book is addressed to researchers in various areas of mathematical analysis, in particular hypercomplex analysis, and approximation theory. It is accessible to graduate students and suitable for graduate courses in the above framework. |
![]() ![]() You may like...
A History of the Conceptions of Limits…
Florian 1859-1930 Cajori
Hardcover
R902
Discovery Miles 9 020
Management and Applications of Complex…
G. Rzevski, S. Syngellakis
Hardcover
R2,522
Discovery Miles 25 220
|