![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
Intractability is a growing concern across the cognitive sciences: while many models of cognition can describe and predict human behavior in the lab, it remains unclear how these models can scale to situations of real-world complexity. Cognition and Intractability is the first book to provide an accessible introduction to computational complexity analysis and its application to questions of intractability in cognitive science. Covering both classical and parameterized complexity analysis, it introduces the mathematical concepts and proof techniques that can be used to test one's intuition of (in)tractability. It also describes how these tools can be applied to cognitive modeling to deal with intractability, and its ramifications, in a systematic way. Aimed at students and researchers in philosophy, cognitive neuroscience, psychology, artificial intelligence, and linguistics who want to build a firm understanding of intractability and its implications in their modeling work, it is an ideal resource for teaching or self-study.
This book contains a rigorous coverage of those topics (and only those topics) that, in the author's judgement, are suitable for inclusion in a first course on Complex Functions. Roughly speaking, these can be summarized as being the things that can be done with Cauchy's integral formula and the residue theorem. On the theoretical side, this includes the basic core of the theory of differentiable complex functions, a theory which is unsurpassed in Mathematics for its cohesion, elegance and wealth of surprises. On the practical side, it includes the computational applications of the residue theorem. Some prominence is given to the latter, because for the more sceptical student they provide the justification for inventing the complex numbers. Analytic continuation and Riemann surfaces form an essentially different chapter of Complex Analysis. A proper treatment is far too sophisticated for a first course, and they are therefore excluded. The aim has been to produce the simplest possible rigorous treatment of the topics discussed. For the programme outlined above, it is quite sufficient to prove Cauchy'S integral theorem for paths in star-shaped open sets, so this is done. No form of the Jordan curve theorem is used anywhere in the book.
This book is a continuation of Volume I of the same title [Grund lehren der mathematischen Wissenschaften, Band 115 ]. We constantly 1 1. The textbook Real and cite definitions and results from Volume abstract analysis by E. HEWITT and K. R. STROMBERG [Berlin * Gottin gen *Heidelberg: Springer-Verlag 1965], which appeared between the publication of the two volumes of this work, contains many standard facts from analysis. We use this book as a convenient reference for such facts, and denote it in the text by RAAA. Most readers will have only occasional need actually to read in RAAA. Our goal in this volume is to present the most important parts of harmonic analysis on compact groups and on locally compact Abelian groups. We deal with general locally compact groups only where they are the natural setting for what we are considering, or where one or another group provides a useful counterexample. Readers who are interested only in compact groups may read as follows: 27, Appendix D, 28-30 [omitting subheads (30.6)-(30.60)ifdesired], (31.22)-(31.25), 32, 34-38, 44. Readers who are interested only in locally compact Abelian groups may read as follows: 31-33, 39-42, selected Mis cellaneous Theorems and Examples in 34-38. For all readers, 43 is interesting but optional. Obviously we have not been able to cover all of harmonic analysis.
This book is intended for someone learning functions of a complex variable and who enjoys using MATLAB. It will enhance the exprience of learning complex variable theory and will strengthen the knowledge of someone already trained in ths branch of advanced calculus. ABET, the accrediting board for engineering programs, makes it clear that engineering graduates must be skilled in the art of programming in a language such as MATLAB (R). Supplying students with a bridge between the functions of complex variable theory and MATLAB, this supplemental text enables instructors to easily add a MATLAB component to their complex variables courses. A MATLAB (R) Companion to Complex Variables provides readers with a clear understanding of the utility of MATLAB in complex variable calculus. An ideal adjunct to standard texts on the functions of complex variables, the book allows professors to quickly find and assign MATLAB programming problems that will strengthen students' knowledge of the language and concepts of complex variable theory. The book shows students how MATLAB can be a powerful learning aid in such staples of complex variable theory as conformal mapping, infinite series, contour integration, and Laplace and Fourier transforms. In addition to MATLAB programming problems, the text includes many examples in each chapter along with MATLAB code. Fractals, the most recent interesting topic involving complex variables, demands to be treated with a language such as MATLAB. This book concludes with a Coda, which is devoted entirely to this visually intriguing subject. MATLAB is not without constraints, limitations, irritations, and quirks, and there are subtleties involved in performing the calculus of complex variable theory with this language. Without knowledge of these subtleties, engineers or scientists attempting to use MATLAB for solutions of practical problems in complex variable theory suffer the risk of making major mistakes. This book serves as an early warning system about these pitfalls.
This book provides a concise survey of the theory of zero product-determined algebras, which has been developed over the last 15 years. It is divided into three parts. The first part presents the purely algebraic branch of the theory, the second part presents the functional analytic branch, and the third part discusses various applications. The book is intended for researchers and graduate students in ring theory, Banach algebra theory, and nonassociative algebra.
Spin glasses are disordered magnetic systems that have led to the development of mathematical tools with an array of real-world applications, from airline scheduling to neural networks. "Spin Glasses and Complexity" offers the most concise, engaging, and accessible introduction to the subject, fully explaining what spin glasses are, why they are important, and how they are opening up new ways of thinking about complexity. This one-of-a-kind guide to spin glasses begins by explaining the fundamentals of order and symmetry in condensed matter physics and how spin glasses fit into--and modify--this framework. It then explores how spin-glass concepts and ideas have found applications in areas as diverse as computational complexity, biological and artificial neural networks, protein folding, immune response maturation, combinatorial optimization, and social network modeling. Providing an essential overview of the history, science, and growing significance of this exciting field, S"pin Glasses and Complexity" also features a forward-looking discussion of what spin glasses may teach us in the future about complex systems. This is a must-have book for students and practitioners in the natural and social sciences, with new material even for the experts.
The Yau-Tian-Donaldson conjecture for anti-canonical polarization was recently solved affirmatively by Chen-Donaldson-Sun and Tian. However, this conjecture is still open for general polarizations or more generally in extremal Kahler cases. In this book, the unsolved cases of the conjecture will be discussed.It will be shown that the problem is closely related to the geometry of moduli spaces of test configurations for polarized algebraic manifolds. Another important tool in our approach is the Chow norm introduced by Zhang. This is closely related to Ding's functional, and plays a crucial role in our differential geometric study of stability. By discussing the Chow norm from various points of view, we shall make a systematic study of the existence problem of extremal Kahler metrics.
Presents Real & Complex Analysis Together Using a Unified
Approach Unlike other undergraduate-level texts, Real and Complex Analysis develops both the real and complex theory together. It takes a unified, elegant approach to the theory that is consistent with the recommendations of the MAA s 2004 Curriculum Guide. By presenting real and complex analysis together, the authors illustrate the connections and differences between these two branches of analysis right from the beginning. This combined development also allows for a more streamlined approach to real and complex function theory. Enhanced by more than 1,000 exercises, the text covers all the essential topics usually found in separate treatments of real analysis and complex analysis. Ancillary materials are available on the book s website. This book offers a unique, comprehensive presentation of both real and complex analysis. Consequently, students will no longer have to use two separate textbooks one for real function theory and one for complex function theory. What's the point of calculating definite integrals since you can't possibly do them all? What makes doing the specific integrals in this book of value aren't the specific answers we'll obtain, but rather the methods we'll use in obtaining those answers; methods you can use for evaluating the integrals you will encounter in the future. This book, now in its second edition, is written in a light-hearted manner for students who have completed the first year of college or high school AP calculus and have just a bit of exposure to the concept of a differential equation. Every result is fully derived. If you are fascinated by definite integrals, then this is a book for you. New material in the second edition includes 25 new challenge problems and solutions, 25 new worked examples, simplified derivations, and additional historical discussion.
Realism and Complexity in Social Science is an argument for a new approach to investigating the social world, that of complex realism. Complex realism brings together a number of strands of thought, in scientific realism, complexity science, probability theory and social research methodology. It proposes that the reality of the social world is that it is probabilistic, yet there exists enough invariance to make the discovery and explanation of social objects and causal mechanisms possible. This forms the basis for the development of a complex realist foundation for social research, that utilises a number of new and novel approaches to investigation, alongside the more traditional corpus of quantitative and qualitative methods. Research examples are drawn from research in sociology, epidemiology, criminology, social policy and human geography. The book assumes no prior knowledge of realism, probability or complexity and in the early chapters, the reader is introduced to these concepts and the arguments against them. Although the book is grounded in philosophical reasoning, this is in a direct and accessible style that will appeal both to social researchers with a methodological interest and philosophers with an interest in social investigation.
A world model: economies, trade, migration, security and development aid. This bookprovides the analytical capability to understand and explore the dynamics of globalisation. It is anchored in economic input-output models of over 200 countries and their relationships through trade, migration, security and development aid. The tools of complexity science are brought to bear and mathematical and computer models are developed both for the elements and for an integrated whole. Models are developed at a variety of scales ranging from the global and international trade through a European model of inter-sub-regional migration to piracy in the Gulf and the London riots of 2011. The models embrace the changing technology of international shipping, the impacts of migration on economic development along with changing patterns of military expenditure and development aid. A unique contribution is the level of spatial disaggregation which presents each of 200+ countries and their mutual interdependencies along with some finer scale analyses of cities and regions. This is the first global model which offers this depth of detail with fully work-out models, these provide tools for policy making at national, European and global scales. Global dynamics: * Presents in depth models of global dynamics. * Provides a world economic model of 200+ countries and their interactions through trade, migration, security and development aid. * Provides pointers to the deployment of analytical capability through modelling in policy development. * Features a variety of models that constitute a formidable toolkit for analysis and policy development. * Offers a demonstration of the practicalities of complexity science concepts. This book is for practitioners and policy analysts as well as those interested in mathematical model building and complexity science as well as advanced undergraduate and postgraduate level students.
Aimed at graduate students, this textbook provides an accessible and comprehensive introduction to operator theory. Rather than discuss the subject in the abstract, this textbook covers the subject through twenty examples of a wide variety of operators, discussing the norm, spectrum, commutant, invariant subspaces, and interesting properties of each operator. The text is supplemented by over 600 end-of-chapter exercises, designed to help the reader master the topics covered in the chapter, as well as providing an opportunity to further explore the vast operator theory literature. Each chapter also contains well-researched historical facts which place each chapter within the broader context of the development of the field as a whole.
The central theme of this reference book is the metric geometry of complex analysis in several variables. Bridging a gap in the current literature, the text focuses on the fine behavior of the Kobayashi metric of complex manifolds and its relationships to dynamical systems, hyperbolicity in the sense of Gromov and operator theory, all very active areas of research. The modern points of view expressed in these notes, collected here for the first time, will be of interest to academics working in the fields of several complex variables and metric geometry. The different topics are treated coherently and include expository presentations of the relevant tools, techniques and objects, which will be particularly useful for graduate and PhD students specializing in the area.
The focus of this book is on open conformal dynamical systems corresponding to the escape of a point through an open Euclidean ball. The ultimate goal is to understand the asymptotic behavior of the escape rate as the radius of the ball tends to zero. In the case of hyperbolic conformal systems this has been addressed by various authors. The conformal maps considered in this book are far more general, and the analysis correspondingly more involved. The asymptotic existence of escape rates is proved and they are calculated in the context of (finite or infinite) countable alphabets, uniformly contracting conformal graph-directed Markov systems, and in particular, conformal countable alphabet iterated function systems. These results have direct applications to interval maps, rational functions and meromorphic maps. Towards this goal the authors develop, on a purely symbolic level, a theory of singular perturbations of Perron--Frobenius (transfer) operators associated with countable alphabet subshifts of finite type and Hoelder continuous summable potentials. This leads to a fairly full account of the structure of the corresponding open dynamical systems and their associated surviving sets.
Complex Analysis is the powerful fusion of the complex numbers (involving the 'imaginary' square root of -1) with ordinary calculus, resulting in a tool that has been of central importance to science for more than 200 years. This book brings this majestic and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. The 501 diagrams of the original edition embodied geometrical arguments that (for the first time) replaced the long and often opaque computations of the standard approach, in force for the previous 200 years, providing direct, intuitive, visual access to the underlying mathematical reality. This new 25th Anniversary Edition introduces brand-new captions that fully explain the geometrical reasoning, making it possible to read the work in an entirely new way-as a highbrow comic book!
John J. Benedetto has had a profound influence not only on the direction of harmonic analysis and its applications, but also on the entire community of people involved in the field. The chapters in this volume - compiled on the occasion of his 80th birthday - are written by leading researchers in the field and pay tribute to John's many significant and lasting achievements. Covering a wide range of topics in harmonic analysis and related areas, these chapters are organized into four main parts: harmonic analysis, wavelets and frames, sampling and signal processing, and compressed sensing and optimization. An introductory chapter also provides a brief overview of John's life and mathematical career. This volume will be an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.
This second edition presents a collection of exercises on the theory of analytic functions, including completed and detailed solutions. It introduces students to various applications and aspects of the theory of analytic functions not always touched on in a first course, while also addressing topics of interest to electrical engineering students (e.g., the realization of rational functions and its connections to the theory of linear systems and state space representations of such systems). It provides examples of important Hilbert spaces of analytic functions (in particular the Hardy space and the Fock space), and also includes a section reviewing essential aspects of topology, functional analysis and Lebesgue integration. Benefits of the 2nd edition Rational functions are now covered in a separate chapter. Further, the section on conformal mappings has been expanded.
This volume collects lecture notes from courses offered at
several conferences and workshops, and provides the first
exposition in book form of the basic theory of the Kahler-Ricci
flow and its current state-of-the-art. While several excellent
books on Kahler-Einstein geometry are available, there have been no
such works on the Kahler-Ricci flow. The book will serve as a
valuable resource for graduate students and researchers in complex
differential geometry, complex algebraic geometry and Riemannian
geometry, and will hopefully foster further developments in this
fascinating area of research.
Random walks, Markov chains and electrical networks serve as an introduction to the study of real-valued functions on finite or infinite graphs, with appropriate interpretations using probability theory and current-voltage laws. The relation between this type of function theory and the (Newton) potential theory on the Euclidean spaces is well-established. The latter theory has been variously generalized, one example being the axiomatic potential theory on locally compact spaces developed by Brelot, with later ramifications from Bauer, Constantinescu and Cornea. A network is a graph with edge-weights that need not be symmetric. This book presents an autonomous theory of harmonic functions and potentials defined on a finite or infinite network, on the lines of axiomatic potential theory. Random walks and electrical networks are important sources for the advancement of the theory.
We introduce mixed twistor D-modules and establish their fundamental functorial properties. We also prove that they can be described as the gluing of admissible variations of mixed twistor structures. In a sense, mixed twistor D-modules can be regarded as a twistor version of M. Saito's mixed Hodge modules. Alternatively, they can be viewed as a mixed version of the pure twistor D-modules studied by C. Sabbah and the author. The theory of mixed twistor D-modules is one of the ultimate goals in the study suggested by Simpson's Meta Theorem and it would form a foundation for the Hodge theory of holonomic D-modules which are not necessarily regular singular.
Functions of a Complex Variable provides all the material for a course on the theory of functions of a complex variable at the senior undergraduate and beginning graduate level. Also suitable for self-study, the book covers every topic essential to training students in complex analysis. It also incorporates special topics to enhance students' understanding of the subject, laying the foundation for future studies in analysis, linear algebra, numerical analysis, geometry, number theory, physics, thermodynamics, or electrical engineering. After introducing the basic concepts of complex numbers and their geometrical representation, the text describes analytic functions, power series and elementary functions, the conformal representation of an analytic function, special transformations, and complex integration. It next discusses zeros of an analytic function, classification of singularities, and singularity at the point of infinity; residue theory, principle of argument, Rouche's theorem, and the location of zeros of complex polynomial equations; and calculus of residues, emphasizing the techniques of definite integrals by contour integration. The authors then explain uniform convergence of sequences and series involving Parseval, Schwarz, and Poisson formulas. They also present harmonic functions and mappings, inverse mappings, and univalent functions as well as analytic continuation.
Rectifiable sets, measures, currents and varifolds are foundational concepts in geometric measure theory. The last four decades have seen the emergence of a wealth of connections between rectifiability and other areas of analysis and geometry, including deep links with the calculus of variations and complex and harmonic analysis. This short book provides an easily digestible overview of this wide and active field, including discussions of historical background, the basic theory in Euclidean and non-Euclidean settings, and the appearance of rectifiability in analysis and geometry. The author avoids complicated technical arguments and long proofs, instead giving the reader a flavour of each of the topics in turn while providing full references to the wider literature in an extensive bibliography. It is a perfect introduction to the area for researchers and graduate students, who will find much inspiration for their own research inside.
This monograph studies decompositions of the Jacobian of a smooth projective curve, induced by the action of a finite group, into a product of abelian subvarieties. The authors give a general theorem on how to decompose the Jacobian which works in many cases and apply it for several groups, as for groups of small order and some series of groups. In many cases, these components are given by Prym varieties of pairs of subcovers. As a consequence, new proofs are obtained for the classical bigonal and trigonal constructions which have the advantage to generalize to more general situations. Several isogenies between Prym varieties also result.
This book collects the proceedings of a series of conferences dedicated to birational geometry of Fano varieties held in Moscow, Shanghai and Pohang The conferences were focused on the following two related problems: * existence of Kahler-Einstein metrics on Fano varieties * degenerations of Fano varieties on which two famous conjectures were recently proved. The first is the famous Borisov-Alexeev-Borisov Conjecture on the boundedness of Fano varieties, proved by Caucher Birkar (for which he was awarded the Fields medal in 2018), and the second one is the (arguably even more famous) Tian-Yau-Donaldson Conjecture on the existence of Kahler-Einstein metrics on (smooth) Fano varieties and K-stability, which was proved by Xiuxiong Chen, Sir Simon Donaldson and Song Sun. The solutions for these longstanding conjectures have opened new directions in birational and Kahler geometries. These research directions generated new interesting mathematical problems, attracting the attention of mathematicians worldwide. These conferences brought together top researchers in both fields (birational geometry and complex geometry) to solve some of these problems and understand the relations between them. The result of this activity is collected in this book, which contains contributions by sixty nine mathematicians, who contributed forty three research and survey papers to this volume. Many of them were participants of the Moscow-Shanghai-Pohang conferences, while the others helped to expand the research breadth of the volume - the diversity of their contributions reflects the vitality of modern Algebraic Geometry. |
You may like...
A Treatise on Differential Equations…
J (John) 1803-1887 Hymers
Hardcover
R919
Discovery Miles 9 190
A History of the Conceptions of Limits…
Florian 1859-1930 Cajori
Hardcover
R887
Discovery Miles 8 870
Hardy Inequalities on Homogeneous Groups
Durvudkhan Suragan, Michael Ruzhansky
Hardcover
R1,841
Discovery Miles 18 410
Annual Report of the Commissioner of…
Uni States Office of Indian Affairs
Hardcover
R920
Discovery Miles 9 200
Management and Applications of Complex…
G. Rzevski, S. Syngellakis
Hardcover
R2,290
Discovery Miles 22 900
|