![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
Originally published in 1999, "Wavelets Made Easy"offers a lucid and concise explanation of mathematical wavelets.Written at the level of a first course in calculus and linear algebra, its accessible presentation is designed for undergraduates in a variety of disciplines computer science, engineering, mathematics, mathematical sciences as well as for practicing professionals in these areas. The presentsoftcover reprintretainsthecorrections fromthesecond printing (2001) andmakesthis uniquetext available to a wider audience. The first chapter startswith a description of the key features and applications of wavelets, focusing on Haar's wavelets but using only high-school mathematics. The next two chapters introduce one-, two-, and three-dimensional wavelets, with only the occasional use of matrix algebra. The second part of this book provides the foundations of least-squares approximation, the discrete Fourier transform, and Fourier series. The third part explains the Fourier transform and then demonstrates how to apply basic Fourier analysis to designing and analyzing mathematical wavelets. Particular attention is paid to Daubechies wavelets. Numerous exercises, a bibliography, and a comprehensive index combine to make this book an excellent text for the classroom as well as a valuable resource for self-study. "
For more than two thousand years some familiarity with mathematics has been regarded as an indispensable part of the intellectual equipment of every cultured person. Today the traditional place of mathematics in education is in grave danger. Unfortunately, professional representatives of mathematics share in the reponsibiIity. The teaching of mathematics has sometimes degen erated into empty drill in problem solving, which may develop formal ability but does not lead to real understanding or to greater intellectual indepen dence. Mathematical research has shown a tendency toward overspecialization and over-emphasis on abstraction. Applications and connections with other fields have been neglected . . . But . . . understanding of mathematics cannot be transmitted by painless entertainment any more than education in music can be brought by the most brilliant journalism to those who never have lis tened intensively. Actual contact with the content of living mathematics is necessary. Nevertheless technicalities and detours should be avoided, and the presentation of mathematics should be just as free from emphasis on routine as from forbidding dogmatism which refuses to disclose motive or goal and which is an unfair obstacle to honest effort. (From the preface to the first edition of What is Mathematics? by Richard Courant and Herbert Robbins, 1941."
Frechet spaces have been studied since the days of Banach. These spaces, their inductive limits and their duals played a prominent role in the development of the theory of locally convex spaces. Also they are natural tools in many areas of real and complex analysis. The pioneering work of Grothendieck in the fifties has been one of the important sources of inspiration for research in the theory of Frechet spaces. A structure theory of nuclear Frechet spaces emerged and some important questions posed by Grothendieck were settled in the seventies. In particular, subspaces and quotient spaces of stable nuclear power series spaces were completely characterized. In the last years it has become increasingly clear that the methods used in the structure theory of nuclear Frechet spaces actually provide new insight to linear problems in diverse branches of analysis and lead to solutions of some classical problems. The unifying theme at our Workshop was the recent developments in the theory of the projective limit functor. This is appropriate because of the important role this theory had in the recent research. The main results of the structure theory of nuclear Frechet spaces can be formulated and proved within the framework of this theory. A major area of application of the theory of the projective limit functor is to decide when a linear operator is surjective and, if it is, to determine whether it has a continuous right inverse.
Over the last decades, the study of nonself-adjoint or nonunitary operators has been mainly based on the method of characteristic functions and on methods of model construction or dilatation for corresponding operator classes. The characteristic function is a mathematical object (a matrix or an operator) associated with a class of nonself-adjoint (or nonunitary) operators that describes the spectral properties of the operators from this class. It may happen that characteristic functions are simpler than the corresponding operators; in this case one can significantly simplify the problem under investigation for these operators. For given characteristic function of an operator A, we construct, in explicit form, an operator that serves as a model A of the operator A in a certain linear space (to some extent this resembles the construction of diagonal and triangular matrices' unitary equivalent or similar, to certain matrix classes). The study of this model operator may give much information about the original operator (its spectrum, the completeness of the system of root subspaces, etc.). In this book, we consider various classes of linear (generally speaking, unbounded) operators, construct and study their characteristic functions and models. We also present a detailed study of contractiol)s and dissipative operators (in particular, from the viewpoint of their triangulation).
Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of "edge-crawling" along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integrals related to the area functional. In particular, far reaching Bernstein theorems are derived. The second part of the book contains what one might justly call a "global theory of minimal surfaces" as envisioned by Smale. First, the Douglas problem is treated anew by using Teichmuller theory. Secondly, various index theorems for minimal theorems are derived, and their consequences for the space of solutions to Plateaus problem are discussed. Finally, a topological approach to minimal surfaces via Fredholm vector fields in the spirit of Smale is presented.
Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a non-constant harmonic mapping X: \Omega\to\R DEGREES3 which is conformally parametrized on \Omega\subset\R DEGREES2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Bjorlings initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateaus problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsches uniqueness theorem and Tomis finiteness result. In addition, a theory of unstable solutions of Plateaus problems is developed which is based on Courants mountain pass lemma. Furthermore, Dirichlets problem for nonparametric H-surfaces is solved, using the solution of Plateaus problem for H-surfaces and the pertinent estimates."
This book evolved out of a graduate course given at the University of New Orleans in 1997. The class consisted of students from applied mathematics andengineering. Theyhadthebackgroundofatleastafirstcourseincomplex analysiswithemphasisonconformalmappingandSchwarz-Christoffeltrans- formation, a firstcourse in numerical analysis, and good to excellent working knowledgeofMathematica* withadditionalknowledgeofsomeprogramming languages. Sincetheclasshad nobackground inIntegralEquations, thechap- tersinvolvingintegralequationformulations werenotcoveredindetail,except for Symm's integral equation which appealed to a subsetofstudents who had some training in boundary element methods. Mathematica was mostly used for computations. In fact, it simplified numerical integration and other oper- ations very significantly, which would have otherwise involved programming inFortran, C, orotherlanguageofchoice, ifclassical numericalmethods were attempted. Overview Exact solutions of boundary value problems for simple regions, such as cir- cles, squares or annuli, can be determined with relative ease even where the boundaryconditionsarerathercomplicated. Green'sfunctionsforsuchsimple regions are known. However, for regions with complex structure the solution ofa boundary value problem often becomes more difficult, even for a simple problemsuchastheDirichletproblem. Oneapproachtosolvingthesedifficult problems is to conformally transform a given multiply connected region onto *Mathematica is a registered trade mark of Wolfram Research, Inc. ix x PREFACE simpler canonical regions. This will, however, result in change not only in the region and the associated boundary conditions but also in the governing differential equation. As compared to the simply connected regions, confor- mal mapping ofmultiply connected regions suffers from severe limitations, one of which is the fact that equal connectivity ofregions is not a sufficient condition to effect a reciprocally connected map ofone region onto another.
Integral representations of holomorphic functions play an important part in the classical theory of functions of one complex variable and in multidimensional com plex analysis (in the later case, alongside with integration over the whole boundary aD of a domain D we frequently encounter integration over the Shilov boundary 5 = S(D)). They solve the classical problem of recovering at the points of a do main D a holomorphic function that is sufficiently well-behaved when approaching the boundary aD, from its values on aD or on S. Alongside with this classical problem, it is possible and natural to consider the following one: to recover the holomorphic function in D from its values on some set MeaD not containing S. Of course, M is to be a set of uniqueness for the class of holomorphic functions under consideration (for example, for the functions continuous in D or belonging to the Hardy class HP(D), p ~ 1).
Multivariable analysis is of interest to pure and applied mathematicians, physicists, electrical, mechanical and systems engineers, mathematical economists, biologists, and statisticians. This book takes the student and researcher on a journey through the core topics of the subject. Systematic exposition, with numerous examples and exercises from the computational to the theoretical, makes difficult ideas as concrete as possible. Good bibliography and index.
The subject of this book is connected with a new direction in mathematics, which has been actively developed over the last few years, namely the field of polynomial computer algebra, which lies at the intersection point of algebra, mathematical analysis and programming. There were several incentives to write the book. First of all, there has lately been a considerable interest in applied nonlinear problems characterized by multiple sta tionary states. Practical needs have then in their turn led to the appearance of new theoretical results in the analysis of systems of nonlinear algebraic equations. And finally, the introduction of various computer packages for analytic manipulations has made it possible to use complicated elimination-theoretical algorithms in prac tical research. The structure of the book is accordingly represented by three main parts: Mathematical results driven to constructive algorithms, computer algebra realizations of these algorithms, and applications. Nonlinear systems of algebraic equations arise in diverse fields of science. In particular, for processes described by systems of differential equations with a poly nomial right hand side one is faced with the problem of determining the number (and location) of the stationary states in certain sets."
About one half of the papers in this volume are based on lectures which were pre sented at a conference at Leipzig University in August 1994, which was dedicated to Vladimir Petrovich Potapov. He would have been eighty years old. These have been supplemented by: (1) Historical material, based on reminiscences of former colleagues, students and associates of V.P. Potapov. (2) Translations of a number of important papers (which serve to clarify the Potapov approach to problems of interpolation and extension, as well as a number of related problems and methods) and are relatively unknown in the West. (3) Two expository papers, which have been especially written for this volume. For purposes of discussion, it is convenient to group the technical papers in this volume into six categories. We will now run through them lightly, first listing the major theme, then in parentheses the authors of the relevant papers, followed by discussion. Some supplementary references are listed at the end; OT72 which appears frequently in this volume, refers to Volume 72 in the series Operator Theory: Advances and Applications. It was dedicated to V.P. Potapov. 1. Multiplicative decompositions (Yu.P. Ginzburg; M.S. Livsic, I.V. Mikhailova; V.I. Smirnov)."
The present monograph consists of two parts. Before Part I, a chapter of introduction is supplemented, where an overview of the whole volume is given for reader's convenience. The former part is devoted mainly to expose linear inte gral operators introduced by the author. Several properties of the operators are established, and specializations as well as generalizations are attempted variously in order to make use them in the latter part. As compared with the former part, the latter part is de voted mainly to develop several kinds of distortions under actions of integral operators for various familiar function also absolute modulus. real part. range. length and area. an gular derivative, etc. Besides them, distortions on the class of univalent functions and its subclasses, Caratheodory class as well as distortions by a differential operator are dealt with. Related differential operators play also active roles. Many illustrative examples will be inserted in order to help understanding of the general statements. The basic materials in this monograph are taken from a series of researches performed by the author himself chiefly in the past two decades. While the themes of the papers pub lished hitherto are necessarily not arranged chronologically Preface viii and systematically, the author makes here an effort to ar range them as, orderly as possible. In attaching the import ance of the self-containedness to the book, some of unfamil iar subjects will also be inserted and, moreover, be wholly accompanied by their respective proofs, though unrelated they may be."
This book, written by our distinguished colleague and friend, Professor Han-Lin Chen of the Institute of Mathematics, Academia Sinica, Beijing, presents, for the first time in book form, his extensive work on complex harmonic splines with applications to wavelet analysis and the numerical solution of boundary integral equations. Professor Chen has worked in Ap proximation Theory and Computational Mathematics for over forty years. His scientific contributions are rich in variety and content. Through his publications and his many excellent Ph. D. students he has taken a leader ship role in the development of these fields within China. This new book is yet another important addition to Professor Chen's quality research in Computational Mathematics. In the last several decades, the theory of spline functions and their ap plications have greatly influenced numerous fields of applied mathematics, most notably, computational mathematics, wavelet analysis and geomet ric modeling. Many books and monographs have been published studying real variable spline functions with a focus on their algebraic, analytic and computational properties. In contrast, this book is the first to present the theory of complex harmonic spline functions and their relation to wavelet analysis with applications to the solution of partial differential equations and boundary integral equations of the second kind. The material presented in this book is unique and interesting. It provides a detailed summary of the important research results of the author and his group and as well as others in the field."
This two-volume monograph obtains fundamental notions and results of the standard differential geometry of smooth (CINFINITY) manifolds, without using differential calculus. Here, the sheaf-theoretic character is emphasised. This has theoretical advantages such as greater perspective, clarity and unification, but also practical benefits ranging from elementary particle physics, via gauge theories and theoretical cosmology (`differential spaces'), to non-linear PDEs (generalised functions). Thus, more general applications, which are no longer `smooth' in the classical sense, can be coped with. The treatise might also be construed as a new systematic endeavour to confront the ever-increasing notion that the `world around us is far from being smooth enough'. Audience: This work is intended for postgraduate students and researchers whose work involves differential geometry, global analysis, analysis on manifolds, algebraic topology, sheaf theory, cohomology, functional analysis or abstract harmonic analysis.
Explores relationship between Fourier Analysis, convex geometry, and related areas; in the past, study of this relationship has led to important mathematical advances Presents new results and applications to diverse fields such as geometry, number theory, and analysis Contributors are leading experts in their respective fields Will be of interest to both pure and applied mathematicians
This volume is a collection of manscripts mainly originating from talks and lectures given at the Workshop on Recent Trends in Complex Methods for Par tial Differential Equations held from July 6 to 10, 1998 at the Middle East Technical University in Ankara, Turkey, sponsored by The Scientific and Tech nical Research Council of Turkey and the Middle East Technical University. This workshop is a continuation oftwo workshops from 1988 and 1993 at the In ternational Centre for Theoretical Physics in Trieste, Italy entitled Functional analytic Methods in Complex Analysis and Applications to Partial Differential Equations. Since classical complex analysis of one and several variables has a long tra dition it is of high level. But most of its basic problems are solved nowadays so that within the last few decades it has lost more and more attention. The area of complex and functional analytic methods in partial differential equations, however, is still a growing and flourishing field, in particular as these methods are not only applied. Whithin the framework of holomorphic functions but are also combined with properties of generalized analytic functions. This can be seen by the many books which recently were published in this field and also by the proceedings in this ISAAC series and the ISAAC congresses and workshops."
The theory of complex analytic sets is part of the modern geometrical theory of functions of several complex variables. A wide circle of problems in multidimensional complex analysis, related to holomorphic functions and maps, can be reformulated in terms of analytic sets. In these reformulations additional phenomena may emerge, while for the proofs new methods are necessary. (As an example we can mention the boundary properties of conformal maps of domains in the plane, which may be studied by means of the boundary properties of the graphs of such maps.) The theory of complex analytic sets is a relatively young branch of complex analysis. Basically, it was developed to fulfill the need of the theory of functions of several complex variables, but for a long time its development was, so to speak, within the framework of algebraic geometry - by analogy with algebraic sets. And although at present the basic methods of the theory of analytic sets are related with analysis and geometry, the foundations of the theory are expounded in the purely algebraic language of ideals in commutative algebras. In the present book I have tried to eliminate this noncorrespondence and to give a geometric exposition of the foundations of the theory of complex analytic sets, using only classical complex analysis and a minimum of algebra (well-known properties of polynomials of one variable). Moreover, it must of course be taken into consideration that algebraic geometry is one of the most important domains of application of the theory of analytic sets, and hence a lot of attention is given in the present book to algebraic sets.
This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first book on numerics of Riemann surfaces that reflects the progress made in this field during the last decade, and it contains original results. There are a growing number of applications that involve the evaluation of concrete characteristics of models analytically described in terms of Riemann surfaces. Many problem settings and computations in this volume are motivated by such concrete applications in geometry and mathematical physics.
This volume of the EMS contains four survey articles on analytic spaces. They are excellent introductions to each respective area. Starting from basic principles in several complex variables each article stretches out to current trends in research. Graduate students and researchers will find a useful addition in the extensive bibliography at the end of each article.
On April 25-27, 1989, over a hundred mathematicians, including eleven from abroad, gathered at the University of Illinois Conference Center at Allerton Park for a major conference on analytic number theory. The occa sion marked the seventieth birthday and impending (official) retirement of Paul T. Bateman, a prominent number theorist and member of the mathe matics faculty at the University of Illinois for almost forty years. For fifteen of these years, he served as head of the mathematics department. The conference featured a total of fifty-four talks, including ten in vited lectures by H. Delange, P. Erdos, H. Iwaniec, M. Knopp, M. Mendes France, H. L. Montgomery, C. Pomerance, W. Schmidt, H. Stark, and R. C. Vaughan. This volume represents the contents of thirty of these talks as well as two further contributions. The papers span a wide range of topics in number theory, with a majority in analytic number theory."
One service mathematics has rendered the 'Et moi, ..., si j'avait Sil comment en revenir, je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences_ Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science .. :; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
There is almost no field in Mathematics which does not use Mathe matical Analysis. Computer methods in Applied Mathematics, too, are often based on statements and procedures of Mathematical Analysis. An important part of Mathematical Analysis is Complex Analysis because it has many applications in various branches of Mathematics. Since the field of Complex Analysis and its applications is a focal point in the Vietnamese research programme, the Hanoi University of Technology organized an International Conference on Finite or Infinite Dimensional Complex Analysis and Applications which took place in Hanoi from August 8 - 12, 2001. This conference th was the 9 one in a series of conferences which take place alternately in China, Japan, Korea and Vietnam each year. The first one took place th at Pusan University in Korea in 1993. The preceding 8 conference was th held in Shandong in China in August 2000. The 9 conference of the was the first one which took place above mentioned series of conferences in Vietnam. Present trends in Complex Analysis reflected in the present volume are mainly concentrated in the following four research directions: 1 Value distribution theory (including meromorphic funtions, mero morphic mappings, as well as p-adic functions over fields of finite or zero characteristic) and its applications, 2 Holomorphic functions in several (finitely or infinitely many) com plex variables, 3 Clifford Analysis, i.e., complex methods in higher-dimensional real Euclidian spaces, 4 Generalized analytic functions."
The present monograph is devoted to the complex theory of differential equations. Not yet a handbook, neither a simple collection of articles, the book is a first attempt to present a more or less detailed exposition of a young but promising branch of mathematics, that is, the complex theory of partial differential equations. Let us try to describe the framework of this theory. First, simple examples show that solutions of differential equations are, as a rule, ramifying analytic functions. and, hence, are not regular near points of their ramification. Second, bearing in mind these important properties of solutions, we shall try to describe the method solving our problem. Surely, one has first to consider differential equations with constant coefficients. The apparatus solving such problems is well-known in the real the ory of differential equations: this is the Fourier transformation. Un fortunately, such a transformation had not yet been constructed for complex-analytic functions and the authors had to construct by them selves. This transformation is, of course, the key notion of the whole theory."
The history of martingale theory goes back to the early fifties when Doob [57] pointed out the connection between martingales and analytic functions. On the basis of Burkholder's scientific achievements the mar tingale theory can perfectly well be applied in complex analysis and in the theory of classical Hardy spaces. This connection is the main point of Durrett's book [60]. The martingale theory can also be well applied in stochastics and mathematical finance. The theories of the one-parameter martingale and the classical Hardy spaces are discussed exhaustively in the literature (see Garsia [83], Neveu [138], Dellacherie and Meyer [54, 55], Long [124], Weisz [216] and Duren [59], Stein [193, 194], Stein and Weiss [192], Lu [125], Uchiyama [205]). The theory of more-parameter martingales and martingale Hardy spaces is investigated in Imkeller [107] and Weisz [216]. This is the first mono graph which considers the theory of more-parameter classical Hardy spaces. The methods of proofs for one and several parameters are en tirely different; in most cases the theorems stated for several parameters are much more difficult to verify. The so-called atomic decomposition method that can be applied both in the one-and more-parameter cases, was considered for martingales by the author in [216].
This book is devoted to some results from the classical Point Set Theory and their applications to certain problems in mathematical analysis of the real line. Notice that various topics from this theory are presented in several books and surveys. From among the most important works devoted to Point Set Theory, let us first of all mention the excellent book by Oxtoby [83] in which a deep analogy between measure and category is discussed in detail. Further, an interesting general approach to problems concerning measure and category is developed in the well-known monograph by Morgan [79] where a fundamental concept of a category base is introduced and investigated. We also wish to mention that the monograph by Cichon, W";glorz and the author [19] has recently been published. In that book, certain classes of subsets of the real line are studied and various cardinal valued functions (characteristics) closely connected with those classes are investigated. Obviously, the IT-ideal of all Lebesgue measure zero subsets of the real line and the IT-ideal of all first category subsets of the same line are extensively studied in [19], and several relatively new results concerning this topic are presented. Finally, it is reasonable to notice here that some special sets of points, the so-called singular spaces, are considered in the classi |
You may like...
Matrix and Operator Valued Functions…
Israel Gohberg, L.A. Sakhnovich
Hardcover
R2,399
Discovery Miles 23 990
Geometric and Harmonic Analysis on…
Ali Baklouti, Takaaki Nomura
Hardcover
R2,671
Discovery Miles 26 710
Hardy Inequalities on Homogeneous Groups
Durvudkhan Suragan, Michael Ruzhansky
Hardcover
R1,841
Discovery Miles 18 410
A History of the Conceptions of Limits…
Florian 1859-1930 Cajori
Hardcover
R887
Discovery Miles 8 870
Annual Report of the Commissioner of…
Uni States Office of Indian Affairs
Hardcover
R920
Discovery Miles 9 200
Elements of the Infinitesimal Calculus…
James Gregory 1837-1924 Clark
Hardcover
R1,013
Discovery Miles 10 130
Management and Applications of Complex…
G. Rzevski, S. Syngellakis
Hardcover
R2,290
Discovery Miles 22 900
|