![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
The aim of this comparatively short textbook is a sufficiently full exposition of the fundamentals of the theory of functions of a complex variable to prepare the student for various applications. Several important applications in physics and engineering are considered in the book. This thorough presentation includes all theorems (with a few exceptions) presented with proofs. No previous exposure to complex numbers is assumed. The textbook can be used in one-semester or two-semester courses. In one respect this book is larger than usual, namely in the number of detailed solutions of typical problems. This, together with various problems, makes the book useful both for self- study and for the instructor as well. A specific point of the book is the inclusion of the Laplace transform. These two topics are closely related. Concepts in complex analysis are needed to formulate and prove basic theorems in Laplace transforms, such as the inverse Laplace transform formula. Methods of complex analysis provide solutions for problems involving Laplace transforms. Complex numbers lend clarity and completion to some areas of classical analysis. These numbers found important applications not only in the mathematical theory, but in the mathematical descriptions of processes in physics and engineering.
The book constitutes a basic, concise, yet rigorous course in complex analysis, for students who have studied calculus in one and several variables, but have not previously been exposed to complex analysis. The textbook should be particularly useful and relevant for undergraduate students in joint programmes with mathematics, as well as engineering students. The aim of the book is to cover the bare bones of the subject with minimal prerequisites. The core content of the book is the three main pillars of complex analysis: the Cauchy-Riemann equations, the Cauchy Integral Theorem, and Taylor and Laurent series expansions.Each section contains several problems, which are not purely drill exercises, but are rather meant to reinforce the fundamental concepts. Detailed solutions to all the exercises appear at the end of the book, making the book ideal also for self-study. There are many figures illustrating the text.
The book constitutes a basic, concise, yet rigorous course in complex analysis, for students who have studied calculus in one and several variables, but have not previously been exposed to complex analysis. The textbook should be particularly useful and relevant for undergraduate students in joint programmes with mathematics, as well as engineering students. The aim of the book is to cover the bare bones of the subject with minimal prerequisites. The core content of the book is the three main pillars of complex analysis: the Cauchy-Riemann equations, the Cauchy Integral Theorem, and Taylor and Laurent series expansions.Each section contains several problems, which are not purely drill exercises, but are rather meant to reinforce the fundamental concepts. Detailed solutions to all the exercises appear at the end of the book, making the book ideal also for self-study. There are many figures illustrating the text.
This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well. The book begins by studying individual smooth algebraic curves, including the most beautiful ones, before addressing families of curves. Studying families of algebraic curves often proves to be more efficient than studying individual curves: these families and their total spaces can still be smooth, even if there are singular curves among their members. A major discovery of the 20th century, attributed to P. Deligne and D. Mumford, was that curves with only mild singularities form smooth compact moduli spaces. An unexpected byproduct of this discovery was the realization that the analysis of more complex curve singularities is not a necessary step in understanding the geometry of the moduli spaces. The book does not use the sophisticated machinery of modern algebraic geometry, and most classical objects related to curves - such as Jacobian, space of holomorphic differentials, the Riemann-Roch theorem, and Weierstrass points - are treated at a basic level that does not require a profound command of algebraic geometry, but which is sufficient for extending them to vector bundles and other geometric objects associated to moduli spaces. Nevertheless, it offers clear information on the construction of the moduli spaces, and provides readers with tools for practical operations with this notion. Based on several lecture courses given by the authors at the Independent University of Moscow and Higher School of Economics, the book also includes a wealth of problems, making it suitable not only for individual research, but also as a textbook for undergraduate and graduate coursework
An H(b) space is defined as a collection of analytic functions that are in the image of an operator. The theory of H(b) spaces bridges two classical subjects, complex analysis and operator theory, which makes it both appealing and demanding. Volume 1 of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of H(b) spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators and Clark measures. Volume 2 focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics.
Far from being separate entities, many social and engineering systems can be considered as complex network systems (CNSs) associated with closely linked interactions with neighbouring entities such as the Internet and power grids. Roughly speaking, a CNS refers to a networking system consisting of lots of interactional individuals, exhibiting fascinating collective behaviour that cannot always be anticipated from the inherent properties of the individuals themselves. As one of the most fundamental examples of cooperative behaviour, consensus within CNSs (or the synchronization of complex networks) has gained considerable attention from various fields of research, including systems science, control theory and electrical engineering. This book mainly studies consensus of CNSs with dynamics topologies - unlike most existing books that have focused on consensus control and analysis for CNSs under a fixed topology. As most practical networks have limited communication ability, switching graphs can be used to characterize real-world communication topologies, leading to a wider range of practical applications. This book provides some novel multiple Lyapunov functions (MLFs), good candidates for analysing the consensus of CNSs with directed switching topologies, while each chapter provides detailed theoretical analyses according to the stability theory of switched systems. Moreover, numerical simulations are provided to validate the theoretical results. Both professional researchers and laypeople will benefit from this book.
This book contains both expository articles and original research in the areas of function theory and operator theory. The contributions include extended versions of some of the lectures by invited speakers at the conference in honor of the memory of Serguei Shimorin at the Mittag-Leffler Institute in the summer of 2018. The book is intended for all researchers in the fields of function theory, operator theory and complex analysis in one or several variables. The expository articles reflecting the current status of several well-established and very dynamical areas of research will be accessible and useful to advanced graduate students and young researchers in pure and applied mathematics, and also to engineers and physicists using complex analysis methods in their investigations.
This contributed volume provides an extensive account of research and expository papers in a broad domain of mathematical analysis and its various applications to a multitude of fields. Presenting the state-of-the-art knowledge in a wide range of topics, the book will be useful to graduate students and researchers in theoretical and applicable interdisciplinary research. The focus is on several subjects including: optimal control problems, optimal maintenance of communication networks, optimal emergency evacuation with uncertainty, cooperative and noncooperative partial differential systems, variational inequalities and general equilibrium models, anisotropic elasticity and harmonic functions, nonlinear stochastic differential equations, operator equations, max-product operators of Kantorovich type, perturbations of operators, integral operators, dynamical systems involving maximal monotone operators, the three-body problem, deceptive systems, hyperbolic equations, strongly generalized preinvex functions, Dirichlet characters, probability distribution functions, applied statistics, integral inequalities, generalized convexity, global hyperbolicity of spacetimes, Douglas-Rachford methods, fixed point problems, the general Rodrigues problem, Banach algebras, affine group, Gibbs semigroup, relator spaces, sparse data representation, Meier-Keeler sequential contractions, hybrid contractions, and polynomial equations. Some of the works published within this volume provide as well guidelines for further research and proposals for new directions and open problems.
Without an introduction, this volume of 19 papers plunges right into the subject matter presented at the June 1998 symposium held at Bayreuth U. in Bayreuth, Germany. A sampling of topics: almost-lines and quasi-lines on projective manifolds, the classification of K3 surfaces with nine cusps, simply connected Godeaux surfaces, Kahlerian structures on symplectic reductions, and A geometric proof of Ax' theorem. One paper is in untranslated French. Includes an essay on Michael Schneider's scientific work with a publications list (including his still standard reference on vector bundles on projective spaces); a photograph and "alpine" vita of Schneider (who died while sports-climbing in 1997); a list of the eight symposium lectures; and a listing of the authors and participants with contact information. Lacks an index.
An H(b) space is defined as a collection of analytic functions which are in the image of an operator. The theory of H(b) spaces bridges two classical subjects: complex analysis and operator theory, which makes it both appealing and demanding. The first volume of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of H(b) spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators, and Clark measures. The second volume focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics.
This conference allowed specialists in several complex variables to meet with specialists in potential theory to demonstrate the interface and interconnections between their two fields. The following topics were discussed: 1. Real and complex potential theory - capacity and approximation, basic properties of plurisubharmonic functions and methods to manipulate their singularities and study theory growth, Green functions, Chebyshev-like quadratures, electrostatic fields and potentials, and the propagation of smallness. 2. Complex dynamics - review of complex dynamics in one variable, Julia sets, Fatou sets, background in several variables, Henon maps, ergodicity use of potential theory and multifunctions. 3. Banach algebras and infinite dimensional holomorphy - analytic multifunctions, spectral theory, analytic functions on a Banach space, semigroups of holomorphic isometries, Pick interpolation on uniform algebras and von Neumann inequalities for operators on a Hilbert space.
Introduction to Holomorphlc Functions of SeveralVariables, Volumes 1-111 provide an extensiveintroduction to the Oka-Cartan theory of holomorphicfunctions of several variables and holomorphicvarieties. Each volume covers a different aspect andcan be read independently.
This work is at the crossroads of a number of mathematical areas, including algebraic geometry, several complex variables, differential geometry, and representation theory. It is the first book to cover complex tori, among the simplest of complex manifolds, which are important to research in the above areas. The book gives a systematic approach to the theory, presents new results, and includes an up-to-date bibliography.
This book is devoted to the theory of entire operators, founded one of the century's best known mathematicians, M.G. Krein. The theory lies at the junction of the spectral theory of Hermitian operators and the theory of analytic functions, harmoniously combining the methods of each. The purpose of the book is to show how various problems of classical and modern analysis can be looked at from the entire operator theory point of view. This is the first systematic presentation of basic concepts of Krein's theory and its applications. The present study of Krein's unpublished lectures and his works gives (over)due recognition to the unique approach he developed - an approach which for many years was not broadly known. The book is intended for researchers as well as graduate and postgraduate students interested in the spectral theory of operators, complex analysis, differential equations and extrapolation problems.
This book (2nd edition) is a self-contained introduction to a wide body of knowledge on nonlinear dynamics and chaos. Manneville emphasises the understanding of basic concepts and the nontrivial character of nonlinear response, contrasting it with the intuitively simple linear response. He explains the theoretical framework using pedagogical examples from fluid dynamics, though prior knowledge of this field is not required. Heuristic arguments and worked examples replace most esoteric technicalities. Only basic understanding of mathematics and physics is required, at the level of what is currently known after one or two years of undergraduate training: elementary calculus, basic notions of linear algebra and ordinary differential calculus, and a few fundamental physical equations (specific complements are provided when necessary). Methods presented are of fully general use, which opens up ample windows on topics of contemporary interest. These include complex dynamical processes such as patterning, chaos control, mixing, and even the Earth's climate. Numerical simulations are proposed as a means to obtain deeper understanding of the intricacies induced by nonlinearities in our everyday environment, with hints on adapted modelling strategies and their implementation.
This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and useful to graduates and researchers in pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. The first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderon-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderon's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.
This volume contains short courses and recent papers by several specialists in different fields of Mathematical Analysis. It offers a wide perspective of the current state of research, and new trends, in areas related to Geometric Analysis, Harmonic Analysis, Complex Analysis, Functional Analysis and History of Mathematics. The contributions are presented with a remarkable expository nature and this makes the discussed topics accessible to a more general audience.
This book collects papers related to the session “Harmonic Analysis and Partial Differential Equations” held at the 13th International ISAAC Congress in Ghent and provides an overview on recent trends and advances in the interplay between harmonic analysis and partial differential equations. The book can serve as useful source of information for mathematicians, scientists and engineers. The volume contains contributions of authors from a variety of countries on a wide range of active research areas covering different aspects of partial differential equations interacting with harmonic analysis and provides a state-of-the-art overview over ongoing research in the field. It shows original research in full detail allowing researchers as well as students to grasp new aspects and broaden their understanding of the area.
The book provides a comprehensive account of particle physics linking various aspects of particle physics in a coherent manner. This self-contained book not only cover basic concepts and recent developments but also overlaps between Astrophysics, Cosmology and Particle Physics, known as astroparticle physics. Several appendices are included to make the book self-contained.
This text represents over 20 years of research on distortions of functionals under actions of linear integral operators. It is divided into two parts. The first part addresses linear integral operators, establishing their properties and attempting to arrive at both specializations as well as generalizations to be used in the second part. The second part is devoted mainly to the development of several kinds of distortions under actions of integral operators for various familiar functionals. Among the topics that are treated are absolute modulus, real part, range, length and area, angular and derivative. Also, distortions on the class of univalent functions and its subclasses, Caratheodory class, and distortions by a differential operator are dealt with.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
This insightful book theorizes the contrast between two logics of organization: bureaucracy and collegiality. Based on this theory and employing a new methodology to transform our sociological understanding, Emmanuel Lazega sheds light on complex organizational phenomena that impact markets, political economy, and social stratification. Lazega focuses on how organizations use and combine logics of bureaucracy and collegiality, deploying and developing the analysis of multilevel networks to explore how these logics coalesce and interact in organizational settings and stratigraphies. Revisiting sociological knowledge on various phenomena, such as coopetition in science, markets and government, the creation of new institutions in political economy and elite self-segregation, this book advances our perception of the changes introduced in the contemporary 'science of organizations' by the digitalization of society. Offering new theoretical insights into organizations, this book is crucial for sociologists of organizations and management scholars, as well as postgraduate students, in search of an innovative understanding of the trajectories of contemporary organizations. The analysis of multilevel networks will also benefit practitioners and analysts working in the field.
Functions of bounded variation represent an important class of functions. Studying their Fourier transforms is a valuable means of revealing their analytic properties. Moreover, it brings to light new interrelations between these functions and the real Hardy space and, correspondingly, between the Fourier transform and the Hilbert transform. This book is divided into two major parts, the first of which addresses several aspects of the behavior of the Fourier transform of a function of bounded variation in dimension one. In turn, the second part examines the Fourier transforms of multivariate functions with bounded Hardy variation. The results obtained are subsequently applicable to problems in approximation theory, summability of the Fourier series and integrability of trigonometric series.
This proceedings is a collection of articles by front-line researchers in Mathematical Analysis, giving the reader a wide perspective of the current research in several areas like Functional Analysis, Complex Analysis and Measure Theory. The works are a fundamental source for current and future developments in these research fields. The articles and surveys have been collected as well as reference results scattered in the corresponding literature and thus, are highly useful to researchers. |
![]() ![]() You may like...
Theory And Practice Of Hydrodynamics And…
Subrata Kumar Chakrabarti
Hardcover
R2,462
Discovery Miles 24 620
Photographic and Descriptive…
Rui Diogo, Josep M. Potau, …
Hardcover
Mechanical Vibrations - Modeling and…
Tony L. Schmitz, K. Scott Smith
Hardcover
R2,940
Discovery Miles 29 400
|