![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
Second Order Differential Equations presents a classical piece of theory concerning hypergeometric special functions as solutions of second-order linear differential equations. The theory is presented in an entirely self-contained way, starting with an introduction of the solution of the second-order differential equations and then focusingon the systematic treatment and classification of these solutions. Each chapter contains a set of problems which help reinforce the theory. Some of the preliminaries are covered in appendices at the end of the book, one of which provides an introduction to Poincare-Perron theory, and the appendix also contains a new way of analyzing the asymptomatic behavior of solutions of differential equations. This textbook is appropriate for advanced undergraduate and graduate students in Mathematics, Physics, and Engineering interested in Ordinary and Partial Differntial Equations. A solutions manual is available online."
This book is related to the theory of functions of a-bounded type in the ha- plane of the complex plane. I constructed this theory by application of the Li- ville integro-differentiation. To some extent, it is similar to M.M.Djrbashian's factorization theory of the classes Na of functions of a-bounded type in the disc, as much as the well known results on different classes and spaces of regular functions in the half-plane are similar to those in the disc. Besides, the book contains improvements of several results such as the Phragmen-Lindelof Principle and Nevanlinna Factorization in the Half-Plane and offers a new, equivalent definition of the classical Hardy spaces in the half-plane. The last chapter of the book presents author's united work with G.M. Gubreev (Odessa). It gives an application of both a-theories in the disc and in the half-plane in the spectral theory of linear operators. This is a solution of a problem repeatedly stated by M.G.Krein and being of special interest for a long time. The book is proposed for a wide range of readers. Some of its parts are comprehensible for graduate students, while the book in the whole is intended for young researchers and qualified specialists in the field.
The idea of complex numbers dates back at least 300 years-to Gauss and Euler, among others. Today complex analysis is a central part of modern analytical thinking. It is used in engineering, physics, mathematics, astrophysics, and many other fields. It provides powerful tools for doing mathematical analysis, and often yields pleasing and unanticipated answers. This book makes the subject of complex analysis accessible to a broad audience. The complex numbers are a somewhat mysterious number system that seems to come out of the blue. It is important for students to see that this is really a very concrete set of objects that has very concrete and meaningful applications. Features: This new edition is a substantial rewrite, focusing on the accessibility, applied, and visual aspect of complex analysis This book has an exceptionally large number of examples and a large number of figures. The topic is presented as a natural outgrowth of the calculus. It is not a new language, or a new way of thinking. Incisive applications appear throughout the book. Partial differential equations are used as a unifying theme.
The theory of complex analytic sets is part of the modern geometrical theory of functions of several complex variables. A wide circle of problems in multidimensional complex analysis, related to holomorphic functions and maps, can be reformulated in terms of analytic sets. In these reformulations additional phenomena may emerge, while for the proofs new methods are necessary. (As an example we can mention the boundary properties of conformal maps of domains in the plane, which may be studied by means of the boundary properties of the graphs of such maps.) The theory of complex analytic sets is a relatively young branch of complex analysis. Basically, it was developed to fulfill the need of the theory of functions of several complex variables, but for a long time its development was, so to speak, within the framework of algebraic geometry - by analogy with algebraic sets. And although at present the basic methods of the theory of analytic sets are related with analysis and geometry, the foundations of the theory are expounded in the purely algebraic language of ideals in commutative algebras. In the present book I have tried to eliminate this noncorrespondence and to give a geometric exposition of the foundations of the theory of complex analytic sets, using only classical complex analysis and a minimum of algebra (well-known properties of polynomials of one variable). Moreover, it must of course be taken into consideration that algebraic geometry is one of the most important domains of application of the theory of analytic sets, and hence a lot of attention is given in the present book to algebraic sets.
This book aims to develop models and modeling techniques that are useful when applied to all complex systems. It adopts both analytic tools and computer simulation. The book is intended for students and researchers with a variety of backgrounds.
Since its original appearance in 1997, Numerical Linear Algebra has been a leading textbook in its field, used in universities around the world. It is noted for its 40 lecture-sized short chapters and its clear and inviting style. It is reissued here with a new foreword by James Nagy and a new afterword by Yuji Nakatsukasa about subsequent developments.
We have considered writing the present book for a long time, since the lack of a sufficiently complete textbook about complex analysis in infinite dimensional spaces was apparent. There are, however, some separate topics on this subject covered in the mathematical literature. For instance, the elementary theory of holomorphic vector- functions.and mappings on Banach spaces is presented in the monographs of E. Hille and R. Phillips [1] and L. Schwartz [1], whereas some results on Banach algebras of holomorphic functions and holomorphic operator-functions are discussed in the books of W. Rudin [1] and T. Kato [1]. Apparently, the need to study holomorphic mappings in infinite dimensional spaces arose for the first time in connection with the development of nonlinear anal- ysis. A systematic study of integral equations with an analytic nonlinear part was started at the end ofthe 19th and the beginning ofthe 20th centuries by A. Liapunov, E. Schmidt, A. Nekrasov and others. Their research work was directed towards the theory of nonlinear waves and used mainly the undetermined coefficients and the majorant power series methods. The most complete presentation of these methods comes from N. Nazarov. In the forties and fifties the interest in Liapunov's and Schmidt's analytic methods diminished temporarily due to the appearence of variational calculus meth- ods (M. Golomb, A. Hammerstein and others) and also to the rapid development of the mapping degree theory (J. Leray, J. Schauder, G. Birkhoff, O. Kellog and others).
A new edition of a classical treatment of elliptic and modular functions with some of their number-theoretic applications, this text offers an updated bibliography and an alternative treatment of the transformation formula for the Dedekind eta function. It covers many topics, such as Hecke 's theory of entire forms with multiplicative Fourier coefficients, and the last chapter recounts Bohr 's theory of equivalence of general Dirichlet series.
Complexity Science and Chaos Theory are fascinating areas of
scientific research with wide-ranging applications. The
interdisciplinary nature and ubiquity of complexity and chaos are
features that provides scientists with a motivation to pursue
general theoretical tools and frameworks. Complex systems give rise
to emergent behaviors, which in turn produce novel and interesting
phenomena in science, engineering, as well as in the socio-economic
sciences.
This proceedings volume gathers selected, peer-reviewed papers presented at the 41st International Conference on Infinite Dimensional Analysis, Quantum Probability and Related Topics (QP41) that was virtually held at the United Arab Emirates University (UAEU) in Al Ain, Abu Dhabi, from March 28th to April 1st, 2021. The works cover recent developments in quantum probability and infinite dimensional analysis, with a special focus on applications to mathematical physics and quantum information theory. Covered topics include white noise theory, quantum field theory, quantum Markov processes, free probability, interacting Fock spaces, and more. By emphasizing the interconnection and interdependence of such research topics and their real-life applications, this reputed conference has set itself as a distinguished forum to communicate and discuss new findings in truly relevant aspects of theoretical and applied mathematics, notably in the field of mathematical physics, as well as an event of choice for the promotion of mathematical applications that address the most relevant problems found in industry. That makes this volume a suitable reading not only for researchers and graduate students with an interest in the field but for practitioners as well.
This volume provides an introduction to dessins d'enfants and embeddings of bipartite graphs in compact Riemann surfaces. The first part of the book presents basic material, guiding the reader through the current field of research. A key point of the second part is the interplay between the automorphism groups of dessins and their Riemann surfaces, and the action of the absolute Galois group on dessins and their algebraic curves. It concludes by showing the links between the theory of dessins and other areas of arithmetic and geometry, such as the abc conjecture, complex multiplication and Beauville surfaces. Dessins d'Enfants on Riemann Surfaces will appeal to graduate students and all mathematicians interested in maps, hypermaps, Riemann surfaces, geometric group actions, and arithmetic.
Coupled with its sequel, this book gives a connected, unified exposition of Approximation Theory for functions of one real variable. It describes spaces of functions such as Sobolev, Lipschitz, Besov rearrangement-invariant function spaces and interpolation of operators. Other topics include Weierstrauss and best approximation theorems, properties of polynomials and splines. It contains history and proofs with an emphasis on principal results.
The theory of complex functions is a strikingly beautiful and powerful area of mathematics. Some particularly fascinating examples are seemingly complicated integrals which are effortlessly computed after reshaping them into integrals along contours, as well as apparently difficult differential and integral equations, which can be elegantly solved using similar methods. To use them is sometimes routine but in many cases it borders on an art. The goal of the book is to introduce the reader to this beautiful area of mathematics and to teach him or her how to use these methods to solve a variety of problems ranging from computation of integrals to solving difficult integral equations. This is done with a help of numerous examples and problems with detailed solutions.
Over the course of a scientific career spanning more than fifty years, Alex Grossmann (1930-2019) made many important contributions to a wide range of areas including, among others, mathematics, numerical analysis, physics, genetics, and biology. His lasting influence can be seen not only in his research and numerous publications, but also through the relationships he cultivated with his collaborators and students. This edited volume features chapters written by some of these colleagues, as well as researchers whom Grossmann’s work and way of thinking has impacted in a decisive way. Reflecting the diversity of his interests and their interdisciplinary nature, these chapters explore a variety of current topics in quantum mechanics, elementary particles, and theoretical physics; wavelets and mathematical analysis; and genomics and biology. A scientific biography of Grossmann, along with a more personal biography written by his son, serve as an introduction. Also included are the introduction to his PhD thesis and an unpublished paper coauthored by him. Researchers working in any of the fields listed above will find this volume to be an insightful and informative work.
This book presents the mathematical study of vortices of the two-dimensional Ginzburg-Landau model, an important phenomenological model used to describe superconductivity. The vortices, identified as quantized amounts of vorticity of the superconducting current localized near points, are the objects of many observational and experimental studies, both past and present. The Ginzburg-Landau functionals considered include both the model cases with and without a magnetic field. The book acts a guide to the various branches of Ginzburg-Landau studies, provides context for the study of vortices, and presents a list of open problems in the field.
For a given meromorphic function I(z) and an arbitrary value a, Nevanlinna's value distribution theory, which can be derived from the well known Poisson-Jensen for mula, deals with relationships between the growth of the function and quantitative estimations of the roots of the equation: 1 (z) - a = O. In the 1920s as an application of the celebrated Nevanlinna's value distribution theory of meromorphic functions, R. Nevanlinna [188] himself proved that for two nonconstant meromorphic func tions I, 9 and five distinctive values ai (i = 1,2,3,4,5) in the extended plane, if 1 1- (ai) = g-l(ai) 1M (ignoring multiplicities) for i = 1,2,3,4,5, then 1 = g. Fur 1 thermore, if 1- (ai) = g-l(ai) CM (counting multiplicities) for i = 1,2,3 and 4, then 1 = L(g), where L denotes a suitable Mobius transformation. Then in the 19708, F. Gross and C. C. Yang started to study the similar but more general questions of two functions that share sets of values. For instance, they proved that if 1 and 9 are two nonconstant entire functions and 8 , 82 and 83 are three distinctive finite sets such 1 1 that 1- (8 ) = g-1(8 ) CM for i = 1,2,3, then 1 = g.
The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects. This is usually complicated, as it is difficult to say anything about their concrete values. This is why the following problem is usually investigated: given some set, how often do values of an arithmetic object get into this set? It turns out that this frequency follows strict mathematical laws. Here we discover an analogy with quantum mechanics where it is impossible to describe the chaotic behaviour of one particle, but that large numbers of particles obey statistical laws. The objects of investigation of this book are Dirichlet series, and, as the title shows, the main attention is devoted to the Riemann zeta-function. In studying the distribution of values of Dirichlet series the weak convergence of probability measures on different spaces (one of the principle asymptotic probability theory methods) is used. The application of this method was launched by H. Bohr in the third decade of this century and it was implemented in his works together with B. Jessen. Further development of this idea was made in the papers of B. Jessen and A. Wintner, V. Borchsenius and B.
Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of computer graphics to provide illustrations that are both mathematically instructive and esthetically pleas ing. During the course of the twentieth century, two major thrusts have played a seminal role in the evolution of minimal surface theory. The first is the work on the Plateau Problem, whose initial phase culminated in the solution for which Jesse Douglas was awarded one of the first two Fields Medals in 1936. (The other Fields Medal that year went to Lars V. Ahlfors for his contributions to complex analysis, including his important new insights in Nevanlinna Theory.) The second was the innovative approach to partial differential equations by Serge Bernstein, which led to the celebrated Bernstein's Theorem, stating that the only solution to the minimal surface equation over the whole plane is the trivial solution: a linear function."
This book discusses, develops and applies the theory of Vilenkin-Fourier series connected to modern harmonic analysis. The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. Such waves have already been used frequently in the theory of signal transmission, multiplexing, filtering, image enhancement, code theory, digital signal processing and pattern recognition. The development of the theory of Vilenkin-Fourier series has been strongly influenced by the classical theory of trigonometric series. Because of this it is inevitable to compare results of Vilenkin-Fourier series to those on trigonometric series. There are many similarities between these theories, but there exist differences also. Much of these can be explained by modern abstract harmonic analysis, which studies orthonormal systems from the point of view of the structure of a topological group. The first part of the book can be used as an introduction to the subject, and the following chapters summarize the most recent research in this fascinating area and can be read independently. Each chapter concludes with historical remarks and open questions. The book will appeal to researchers working in Fourier and more broad harmonic analysis and will inspire them for their own and their students' research. Moreover, researchers in applied fields will appreciate it as a sourcebook far beyond the traditional mathematical domains.
Contributions from the very "Who's Who" of complex analysis researchers and teachers Both pure and applied topics Applications to many fields
This book highlights a number of recent research advances in the field of symplectic and contact geometry and topology, and related areas in low-dimensional topology. This field has experienced significant and exciting growth in the past few decades, and this volume provides an accessible introduction into many active research problems in this area. The papers were written with a broad audience in mind so as to reach a wide range of mathematicians at various levels. Aside from teaching readers about developing research areas, this book will inspire researchers to ask further questions to continue to advance the field. The volume contains both original results and survey articles, presenting the results of collaborative research on a wide range of topics. These projects began at the Research Collaboration Conference for Women in Symplectic and Contact Geometry and Topology (WiSCon) in July 2019 at ICERM, Brown University. Each group of authors included female and nonbinary mathematicians at different career levels in mathematics and with varying areas of expertise. This paved the way for new connections between mathematicians at all career levels, spanning multiple continents, and resulted in the new collaborations and directions that are featured in this work.
This volume presents in a unified manner both classic as well as modern research results devoted to trigonometric sums. Such sums play an integral role in the formulation and understanding of a broad spectrum of problems which range over surprisingly many and different research areas. Fundamental and new developments are presented to discern solutions to problems across several scientific disciplines. Graduate students and researchers will find within this book numerous examples and a plethora of results related to trigonometric sums through pure and applied research along with open problems and new directions for future research.
This book discusses the theory of wavelets on local fields of positive characteristic. The discussion starts with a thorough introduction to topological groups and local fields. It then provides a proof of the existence and uniqueness of Haar measures on locally compact groups. It later gives several examples of locally compact groups and describes their Haar measures. The book focuses on multiresolution analysis and wavelets on a local field of positive characteristic. It provides characterizations of various functions associated with wavelet analysis such as scaling functions, wavelets, MRA-wavelets and low-pass filters. Many other concepts which are discussed in details are biorthogonal wavelets, wavelet packets, affine and quasi-affine frames, MSF multiwavelets, multiwavelet sets, generalized scaling sets, scaling sets, unconditional basis properties of wavelets and shift invariant spaces.
An ideal text for an advanced course in the theory of complex functions, this book leads readers to experience function theory personally and to participate in the work of the creative mathematician. The author includes numerous glimpses of the function theory of several complex variables, which illustrate how autonomous this discipline has become. In addition to standard topics, readers will find Eisenstein's proof of Euler's product formula for the sine function; Wielandts uniqueness theorem for the gamma function; Stirlings formula; Isssas theorem; Besses proof that all domains in C are domains of holomorphy; Wedderburns lemma and the ideal theory of rings of holomorphic functions; Estermanns proofs of the overconvergence theorem and Blochs theorem; a holomorphic imbedding of the unit disc in C3; and Gausss expert opinion on Riemanns dissertation. Remmert elegantly presents the material in short clear sections, with compact proofs and historical comments interwoven throughout the text. The abundance of examples, exercises, and historical remarks, as well as the extensive bibliography, combine to make an invaluable source for students and teachers alike
From its origins in Newtonian physics, potential theory has
developed into a major field of mathematical research. This book
provides a comprehensive treatment of classical potential theory:
it covers harmonic and subharmonic functions, maximum principles,
polynomial expansions, Green functions, potentials and capacity,
the Dirichlet problem and boundary integral representations. The
first six chapters deal concretely with the basic theory, and
include exercises. The final three chapters are more advanced and
treat topological ideas specifically created for potential theory,
such as the fine topology, the Martin boundary and minimal
thinness. |
![]() ![]() You may like...
Sequences, Groups, and Number Theory
Valerie Berthe, Michel Rigo
Hardcover
R5,414
Discovery Miles 54 140
Discrete Event Modeling and Simulation…
Hessam S. Sarjoughian, Francois E. Cellier
Hardcover
R1,795
Discovery Miles 17 950
Landscape Simulation Modeling - A…
Robert Costanza, Alexey Voinov
Hardcover
R1,650
Discovery Miles 16 500
Computer Simulations in Science and…
Petra Ahrweiler, Nigel Gilbert
Hardcover
R3,173
Discovery Miles 31 730
Algebra, Geometry and Software Systems
Michael Joswig, Nobuki Takayama
Hardcover
R3,069
Discovery Miles 30 690
Computational Modeling and Problem…
Hemant K. Bhargava, Nong Ye
Hardcover
R4,744
Discovery Miles 47 440
|