![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
The present book is a valuable continuation of the large cycle of the author's investigations on harmonic analysis in the complex domain. For certain sets of segments in the complex domain, the elegant and explicit apparatus of the biorthogonal Fourier type systems (basis systems in the Rieszian sense), is constructed by purely analytic methods of classical function theory. This is done using the remarkable asymptotic properties of the Mittag-Leffler type entire functions and new interpolation theorems for the Banach spaces of entire functions. It is especially noteworthy that at the same time the constructed basis systems are eigenfunctions for quite non-ordinary boundary value problems in the complex domain for differential equations of fractional order. Such boundary value problems, the solutions of which are carried through to a logical conclusion, i.e. up to the theorems of expansions into eigenfunctions, are considered in the book for the first time.
This book is an introduction to the theory of complex manifolds. The authors¿ intent is to familiarize the reader with the most important branches and methods in complex analysis of several variables and to do this as simply as possible. Therefore, the abstract concepts involving sheaves, coherence, and higher-dimensional cohomology have been completely avoided. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Nevertheless, deep results can be proved. The book can be used as a first introduction to several complex variables as well as a reference for the expert.
This book addresses the need for an accessible comprehensive exposition of the theory of uniform measures; the need that became more critical when recently uniform measures reemerged in new results in abstract harmonic analysis. Until now, results about uniform measures have been scattered through many papers written by a number of authors, some unpublished, written using a variety of definitions and notations. Uniform measures are certain functionals on the space of bounded uniformly continuous functions on a uniform space. They are a common generalization of several classes of measures and measure-like functionals studied in abstract and topological measure theory, probability theory, and abstract harmonic analysis. They offer a natural framework for results about topologies on spaces of measures and about the continuity of convolution of measures on topological groups and semitopological semigroups. The book is a reference for the theory of uniform measures. It includes a self-contained development of the theory with complete proofs, starting with the necessary parts of the theory of uniform spaces. It presents diverse results from many sources organized in a logical whole, and includes several new results. The book is also suitable for graduate or advanced undergraduate courses on selected topics in topology and functional analysis. The text contains a number of exercises with solution hints, and four problems with suggestions for further research. "
Geometric Function Theory is a central part of Complex Analysis
(one complex variable). The Handbook of Complex Analysis -
Geometric Function Theory deals with this field and its many
ramifications and relations to other areas of mathematics and
physics. The theory of conformal and quasiconformal mappings plays
a central role in this Handbook, for example a priori-estimates for
these mappings which arise from solving extremal problems, and
constructive methods are considered. As a new field the theory of
circle packings which goes back to P. Koebe is included. The
Handbook should be useful for experts as well as for mathematicians
working in other areas, as well as for physicists and engineers.
Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps.
The international workshop on which this proceedings volume is based on brought together leading researchers in the field of elliptic and parabolic equations. Particular emphasis was put on the interaction between well-established scientists and emerging young mathematicians, as well as on exploring new connections between pure and applied mathematics. The volume contains material derived after the workshop taking up the impetus to continue collaboration and to incorporate additional new results and insights.
This volume consists of papers presented in the special sessions on "Complex and Numerical Analysis," "Value Distribution Theory and Complex Domains," and "Use of Symbolic Computation in Mathematics Education" of the ISAAC'97 Congress held at the University of Delaware, during June 2-7, 1997. The ISAAC Congress coincided with a U.S.-Japan Seminar also held at the University of Delaware. The latter was supported by the National Science Foundation through Grant INT-9603029 and the Japan Society for the Promotion of Science through Grant MTCS-134. It was natural that the participants of both meetings should interact and consequently several persons attending the Congress also presented papers in the Seminar. The success of the ISAAC Congress and the U.S.-Japan Seminar has led to the ISAAC'99 Congress being held in Fukuoka, Japan during August 1999. Many of the same participants will return to this Seminar. Indeed, it appears that the spirit of the U.S.-Japan Seminar will be continued every second year as part of the ISAAC Congresses. We decided to include with the papers presented in the ISAAC Congress and the U.S.-Japan Seminar several very good papers by colleagues from the former Soviet Union. These participants in the ISAAC Congress attended at their own expense.
Integral equations have wide applications in various fields, including continuum mechanics, potential theory, geophysics, electricity and magnetism, kinetic theory of gases, hereditary phenomena in physics and biology, renewal theory, quantum mechanics, radiation, optimization, optimal control systems, communication theory, mathematical economics, population genetics, queueing theory, and medicine. Computational Methods for Linear Integral Equations presents basic theoretical material that deals with numerical analysis, convergence, error estimates, and accuracy. The unique computational aspect leads the reader from theoretical and practical problems all the way through to computation with hands-on guidance for input files and the execution of computer programs. Features: * Offers all supporting MathematicaA(R) files related to the book via the Internet at the authors' Web sites: www.math.uno.edu/fac/pkythe.html or www.math.uno.edu/fac/ppuri.html * Contains identification codes for problems, related methods, and computer programs that are cross-referenced throughout the book to make the connections easy to understand * Illustrates a how-to approach to computational work in the development of algorithms, construction of input files, timing, and accuracy analysis * Covers linear integral equations of Fredholm and Volterra types of the first and second kinds as well as associated singular integral equations, integro-differential equations, and eigenvalue problems * Provides clear, step-by-step guidelines for solving difficult and complex computational problems This book is an essential reference and authoritative resource for all professionals, graduate students, and researchers in mathematics, physical sciences, and engineering. Researchers interested in the numerical solution of integral equations will find its practical problem-solving style both accessible and useful for their work.
The book provides an introduction to complex analysis for students with some familiarity with complex numbers from high school. The book consists of three parts. The first part comprises the basic core of a course in complex analysis for junior and senior undergraduates. The second part includes various more specialized topics as the argument principle, the Schwarz lemma and hyperbolic geometry, the Poisson integral, and the Riemann mapping theorem. The third part consists of a selection of topics designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics selected include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces. The three geometries, spherical, euclidean, and hyperbolic, are stressed. Exercises range from the very simple to the quite challenging, in all chapters. The book is based on lectures given over the years by the author at several places, particularly the Interuniversity Summer School at Perugia (Italy), and also UCLA, Brown University, Valencia (Spain), and La Plata (Argentina). A native of Minnesota, the author did his undergraduate work at Yale University and his graduate work at UC Berkeley. After spending some time at MIT and at the Universidad Nacional de La Plata (Argentina), he joined the faculty at UCLA in 1968. The author has published a number of research articles and several books on functional analysis and analytic function theory. he is currently involved in the California K-12 education scene.
This volume includes 28 chapters by authors who are leading researchers of the world describing many of the up-to-date aspects in the field of several complex variables (SCV). These contributions are based upon their presentations at the 10th Korean Conference on Several Complex Variables (KSCV10), held as a satellite conference to the International Congress of Mathematicians (ICM) 2014 in Seoul, Korea. SCV has been the term for multidimensional complex analysis, one of the central research areas in mathematics. Studies over time have revealed a variety of rich, intriguing, new knowledge in complex analysis and geometry of analytic spaces and holomorphic functions which were "hidden" in the case of complex dimension one. These new theories have significant intersections with algebraic geometry, differential geometry, partial differential equations, dynamics, functional analysis and operator theory, and sheaves and cohomology, as well as the traditional analysis of holomorphic functions in all dimensions. This book is suitable for a broad audience of mathematicians at and above the beginning graduate-student level. Many chapters pose open-ended problems for further research, and one in particular is devoted to problems for future investigations.
The topics of this set of student-oriented books are presented in a discursive style that is readable and easy to follow. Numerous clearly stated, completely worked out examples together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to help students feel comfortable and confident in using advanced mathematical tools in junior, senior, and beginning graduate courses.
In August 1995 an international symposium on "Quasiconformal Mappings and Analysis" was held in Ann Arbor on the occasion of Professor Fred- erick W. Gehring's 70th birthday and his impending retirement from the Mathematics Department at the University of Michigan. The concept of the symposium was to feature broad survey talks on a wide array of topics related to Gehring's basic research contributions in the field of quasicon- formal mappings, emphasizing their relations to other parts of analysis. Principal speakers were Kari Astala, Albert Baernstein, Clifford Earle, Pe- ter Jones, Irwin Kra, OUi Lehto, Gaven Martin, Dennis Sullivan, and Jussi Vaisala. Financial support was provided by the National Science Founda- tion, with additional grants from the University of Michigan and from the Institute for Mathematics and its Applications. The symposium was a great success. The speakers rose to the occasion and presented excellent survey lectures. The present volume was conceived as a means for disseminating those expositions to a wider audience. Ad- ditional mathematicians, some of whom had not been able to attend the symposium, were invited to contribute similar articles. The result is a fit- ting tribute to Fred Gehring's pre-eminent role in developing the theory of quasiconformal mappings, through his own research and writings and lec- tures, and through his supervision of graduate students. The volume begins with descriptions of Gehring's mathematical career and an overview of his research achievements.
For the past 25 years, the Geometrization Program of Thurston has been a driving force for research in 3-manifold topology. This has inspired a surge of activity investigating hyperbolic 3-manifolds (and Kleinian groups), as these manifolds form the largest and least well-understood class of compact 3-manifolds. Familiar and new tools from diverse areas of mathematics have been utilized in these investigations, from topology, geometry, analysis, group theory, and from the point of view of this book, algebra and number theory. This book is aimed at readers already familiar with the basics of hyperbolic 3-manifolds or Kleinian groups, and it is intended to introduce them to the interesting connections with number theory and the tools that will be required to pursue them. While there are a number of texts which cover the topological, geometric and analytical aspects of hyperbolic 3-manifolds, this book is unique in that it deals exclusively with the arithmetic aspects, which are not covered in other texts. Colin Maclachlan is a Reader in the Department of Mathematical Sciences at the University of Aberdeen in Scotland where he has served since 1968. He is a former President of the Edinburgh Mathematical Society. Alan Reid is a Professor in the Department of Mathematics at The University of Texas at Austin. He is a former Royal Society University Research Fellow, Alfred P. Sloan Fellow and winner of the Sir Edmund Whittaker Prize from The Edinburgh Mathematical Society. Both authors have published extensively in the general area of discrete groups, hyperbolic manifolds and low-dimensional topology.
A lively and vivid look at the material from function theory, including the residue calculus, supported by examples and practice exercises throughout. There is also ample discussion of the historical evolution of the theory, biographical sketches of important contributors, and citations - in the original language with their English translation - from their classical works. Yet the book is far from being a mere history of function theory, and even experts will find a few new or long forgotten gems here. Destined to accompany students making their way into this classical area of mathematics, the book offers quick access to the essential results for exam preparation. Teachers and interested mathematicians in finance, industry and science will profit from reading this again and again, and will refer back to it with pleasure.
Almost Automorphic and Almost Periodic Functions in Abstract Spaces introduces and develops the theory of almost automorphic vector-valued functions in Bochner's sense and the study of almost periodic functions in a locally convex space in a homogenous and unified manner. It also applies the results obtained to study almost automorphic solutions of abstract differential equations, expanding the core topics with a plethora of groundbreaking new results and applications. For the sake of clarity, and to spare the reader unnecessary technical hurdles, the concepts are studied using classical methods of functional analysis.
This volume constitutes the proceedings of a workshop whose main purpose was to exchange information on current topics in complex analysis, differential geometry, mathematical physics and applications, and to group aspects of new mathematics.
The Complex Variable Boundary Element Method (CVBEM) has an important role to play in a number of technical engineering situations and can be a tremendous help to scholars and practitioners preoccupied with solving problems in areas such as heat transport, structural mechanics and river hydraulics. As well as describing the extremely useful applications of this method, the authors explain the mathematical background to the CVBEM, which is vital to understanding the subject as a whole. Advances in the Complex Variable Boundary Element Method is the most comprehensive of books on this subject, bringing together ten years of work and boasting the latest news in CVBEM technology. It will be of particular interest to those concerned with solving technical engineering problems - scientists, graduate students, computer programmers and those working in industry may all find the book helpful.
The book Complex Analysis through Examples and Exercises has come out from the lectures and exercises that the author held mostly for mathematician and physists . The book is an attempt to present the rat her involved subject of complex analysis through an active approach by the reader. Thus this book is a complex combination of theory and examples. Complex analysis is involved in all branches of mathematics. It often happens that the complex analysis is the shortest path for solving a problem in real circum stances. We are using the (Cauchy) integral approach and the (Weierstrass) power se ries approach . In the theory of complex analysis, on the hand one has an interplay of several mathematical disciplines, while on the other various methods, tools, and approaches. In view of that, the exposition of new notions and methods in our book is taken step by step. A minimal amount of expository theory is included at the beinning of each section, the Preliminaries, with maximum effort placed on weil selected examples and exercises capturing the essence of the material. Actually, I have divided the problems into two classes called Examples and Exercises (some of them often also contain proofs of the statements from the Preliminaries). The examples contain complete solutions and serve as a model for solving similar problems given in the exercises. The readers are left to find the solution in the exercisesj the answers, and, occasionally, some hints, are still given."
Recent years have witnessed an increasingly close relationship growing between potential theory, probability and degenerate partial differential operators. The theory of Dirichlet (Markovian) forms on an abstract finite or infinite-dimensional space is common to all three disciplines. This is a fascinating and important subject, central to many of the contributions to the conference on Potential Theory and Degenerate Partial Differential Operators', held in Parma, Italy, February 1994.
This is the first systematic presentation of the capacitory approach and symmetrization in the context of complex analysis. The content of the book is original - the main part has not been covered by existing textbooks and monographs. After an introduction to the theory of condenser capacities in the plane, the monotonicity of the capacity under various special transformations (polarization, Gonchar transformation, averaging transformations and others) is established, followed by various types of symmetrization which are one of the main objects of the book. By using symmetrization principles, some metric properties of compact sets are obtained and some extremal decomposition problems are solved. Moreover, the classical and present facts for univalent and multivalent meromorphic functions are proven. This book will be a valuable source for current and future researchers in various branches of complex analysis and potential theory.
The subject of the book is Diophantine approximation and Nevanlinna theory. Not only does the text provide new results and directions, it also challenges open problems and collects latest research activities on these subjects made by the authors over the past eight years. Some of the significant findings are the proof of the Green-Griffiths conjecture by using meromorphic connections and Jacobian sections, and a generalized abc-conjecture. The book also presents the state of the art in the studies of the analogues between Diophantine approximation (in number theory) and value distribution theory (in complex analysis), with a method based on Vojta's dictionary for the terms of these two fields. The approaches are relatively natural and more effective than existing methods. The book is self-contained and appended with a comprehensive and up-to-date list of references. It is of interest to a broad audience of graduate students and researchers specialized in pure mathematics.
The main theme of this book is the homotopy principle for holomorphic mappings from Stein manifolds to the newly introduced class of Oka manifolds. The book contains the first complete account of Oka-Grauert theory and its modern extensions, initiated by Mikhail Gromov and developed in the last decade by the author and his collaborators. Included is the first systematic presentation of the theory of holomorphic automorphisms of complex Euclidean spaces, a survey on Stein neighborhoods, connections between the geometry of Stein surfaces and Seiberg-Witten theory, and a wide variety of applications ranging from classical to contemporary."
The approximation of functions by linear positive operators is an important research topic in general mathematics and it also provides powerful tools to application areas suchas computer-aided geometric design, numerical analysis, and solutions of differential equations. q-Calculus is a generalization of many subjects, such as hypergeometric series, complex analysis, and particle physics. This monograph is an introduction to combining approximation theory and q-Calculus with applications, by usingwell- known operators. The presentation is systematic and the authors include a brief summary of the notations and basicdefinitions ofq-calculus before delving into more advanced material. Themany applications of q-calculus in the theory of approximation, especially onvariousoperators, which includes convergence of operators to functions in real and complex domain forms the gist of the book. This book is suitable for researchers andstudents in mathematics, physics andengineering, and forprofessionals who would enjoy exploring the host of mathematicaltechniques and ideas that are collected and discussedin thebook."
An approach to complexity theory which offers a means of analysing algorithms in terms of their tractability. The authors consider the problem in terms of parameterized languages and taking "k-slices" of the language, thus introducing readers to new classes of algorithms which may be analysed more precisely than was the case until now. The book is as self-contained as possible and includes a great deal of background material. As a result, computer scientists, mathematicians, and graduate students interested in the design and analysis of algorithms will find much of interest. |
You may like...
Elements of the Infinitesimal Calculus…
James Gregory 1837-1924 Clark
Hardcover
R1,013
Discovery Miles 10 130
Hardy Inequalities on Homogeneous Groups
Durvudkhan Suragan, Michael Ruzhansky
Hardcover
R1,841
Discovery Miles 18 410
Annual Report of the Commissioner of…
Uni States Office of Indian Affairs
Hardcover
R920
Discovery Miles 9 200
A History of the Conceptions of Limits…
Florian 1859-1930 Cajori
Hardcover
R887
Discovery Miles 8 870
Linear Systems, Signal Processing and…
Daniel Alpay, Mihaela B. Vajiac
Hardcover
R4,274
Discovery Miles 42 740
|