![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
The authors aim here is to present a precise and concise treatment of those parts of complex analysis that should be familiar to every research mathematician. They follow a path in the tradition of Ahlfors and Bers by dedicating the book to a very precise goal: the statement and proof of the Fundamental Theorem for functions of one complex variable. They discuss the many equivalent ways of understanding the concept of analyticity, and offer a leisure exploration of interesting consequences and applications. Readers should have had undergraduate courses in advanced calculus, linear algebra, and some abstract algebra. No background in complex analysis is required."
This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kahler and non-Kahler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.
This book, written by our distinguished colleague and friend, Professor Han-Lin Chen of the Institute of Mathematics, Academia Sinica, Beijing, presents, for the first time in book form, his extensive work on complex harmonic splines with applications to wavelet analysis and the numerical solution of boundary integral equations. Professor Chen has worked in Ap proximation Theory and Computational Mathematics for over forty years. His scientific contributions are rich in variety and content. Through his publications and his many excellent Ph. D. students he has taken a leader ship role in the development of these fields within China. This new book is yet another important addition to Professor Chen's quality research in Computational Mathematics. In the last several decades, the theory of spline functions and their ap plications have greatly influenced numerous fields of applied mathematics, most notably, computational mathematics, wavelet analysis and geomet ric modeling. Many books and monographs have been published studying real variable spline functions with a focus on their algebraic, analytic and computational properties. In contrast, this book is the first to present the theory of complex harmonic spline functions and their relation to wavelet analysis with applications to the solution of partial differential equations and boundary integral equations of the second kind. The material presented in this book is unique and interesting. It provides a detailed summary of the important research results of the author and his group and as well as others in the field."
This is a book on holomorphic operator functions of a single variable and their - plications,whichisfocussedontherelationsbetweenlocalandglobaltheories.Itis based on methods and technics of Complex analysis of scalar and matrix functions of several variables. The applications concern: interpolation, holomorphic families of subspaces and frames, spectral theory of polynomials with operator coe?cients, holomorphic equivalence and diagonalization, and Plemelj-Muschelishvili fact- ization. The book also contains a theory of Wiener-Hopf integral equations with operator-valued kernels and a theory of in?nite Toplitz .. matrices with operator entries. We started to work on these topics long ago when one of us was a Ph.D. s- dent of the other in Kishinev (now Cisinau) University. Then our main interests were in problems of factorization of operator-valued functions and singular in- gral operators. Working in this area, we realized from the beginning that di?erent methods and tools from Complex analysis of several variables and their modi?- tions are very useful in obtaining results on factorization for matrix and operator functions. We have in mind di?erent methods and results concerning connections between local and global properties of holomorphic functions. The ?rst period was very fruitful and during it we obtained the basic results presented in this book.
An incredible season for algebraic geometry flourished in Italy between 1860, when Luigi Cremona was assigned the chair of Geometria Superiore in Bologna, and 1959, when Francesco Severi published the last volume of the treatise on algebraic systems over a surface and an algebraic variety. This century-long season has had a prominent influence on the evolution of complex algebraic geometry - both at the national and international levels - and still inspires modern research in the area. "Algebraic geometry in Italy between tradition and future" is a collection of contributions aiming at presenting some of these powerful ideas and their connection to contemporary and, if possible, future developments, such as Cremonian transformations, birational classification of high-dimensional varieties starting from Gino Fano, the life and works of Guido Castelnuovo, Francesco Severi's mathematical library, etc. The presentation is enriched by the viewpoint of various researchers of the history of mathematics, who describe the cultural milieu and tell about the bios of some of the most famous mathematicians of those times.
This book is a basic reference in the modern theory of holomorphic foliations, presenting the interplay between various aspects of the theory and utilizing methods from algebraic and complex geometry along with techniques from complex dynamics and several complex variables. The result is a solid introduction to the theory of foliations, covering basic concepts through modern results on the structure of foliations on complex projective spaces.
This book defines and examines the counterpart of Schur functions and Schur analysis in the slice hyperholomorphic setting. It is organized into three parts: the first introduces readers to classical Schur analysis, while the second offers background material on quaternions, slice hyperholomorphic functions, and quaternionic functional analysis. The third part represents the core of the book and explores quaternionic Schur analysis and its various applications. The book includes previously unpublished results and provides the basis for new directions of research.
The book presents the method of difference potentials first proposed by the author in 1969 and contains illustrative examples and new algorithms for solving applied problems of gas dynamics, diffraction, scattering theory, and active noise screening. The fundamentals of the method are described in Parts I-III and its applications in Parts IV-VIII. To get acquainted with the basic ideas of the method, it suffices to study the Introduction. After this, each of the Parts VI-VIII can be read independently. The book is intended for specialists in the field of computational mathematics and the theory of differential and integral equations, as well as for graduate students of related specialities.
This book provides a self-contained exposition of the theory of algebraic curves without requiring any of the prerequisites of modern algebraic geometry. The self-contained treatment makes this important and mathematically central subject accessible to non-specialists. At the same time, specialists in the field may be interested to discover several unusual topics. Among these are Tate's theory of residues, higher derivatives and Weierstrass points in characteristic p, the Stöhr--Voloch proof of the Riemann hypothesis, and a treatment of inseparable residue field extensions. Although the exposition is based on the theory of function fields in one variable, the book is unusual in that it also covers projective curves, including singularities and a section on plane curves. David Goldschmidt has served as the Director of the Center for Communications Research since 1991. Prior to that he was Professor of Mathematics at the University of California, Berkeley.
Since the appearance of Kobayashi's book, there have been several re sults at the basic level of hyperbolic spaces, for instance Brody's theorem, and results of Green, Kiernan, Kobayashi, Noguchi, etc. which make it worthwhile to have a systematic exposition. Although of necessity I re produce some theorems from Kobayashi, I take a different direction, with different applications in mind, so the present book does not super sede Kobayashi's. My interest in these matters stems from their relations with diophan tine geometry. Indeed, if X is a projective variety over the complex numbers, then I conjecture that X is hyperbolic if and only if X has only a finite number of rational points in every finitely generated field over the rational numbers. There are also a number of subsidiary conjectures related to this one. These conjectures are qualitative. Vojta has made quantitative conjectures by relating the Second Main Theorem of Nevan linna theory to the theory of heights, and he has conjectured bounds on heights stemming from inequalities having to do with diophantine approximations and implying both classical and modern conjectures. Noguchi has looked at the function field case and made substantial progress, after the line started by Grauert and Grauert-Reckziegel and continued by a recent paper of Riebesehl. The book is divided into three main parts: the basic complex analytic theory, differential geometric aspects, and Nevanlinna theory. Several chapters of this book are logically independent of each other."
ICPT91, the International Conference on Potential Theory, was held in Amersfoort, the Netherlands, from August 18--24, 1991. The volume consists of two parts, the first of which contains papers which also appear in the special issue of POTENTIAL ANALYSIS. The second part includes a collection of contributions edited and partly produced in Utrecht. Professor Monna wrote a preface reminiscing about his experiences with potential theory, mathematics and mathematicians during the last sixty years. The final pages contain a list of participants and a compact index.
In the library at Trinity College, Cambridge in 1976, George Andrews of Pennsylvania State University discovered a sheaf of pages in the handwriting of Srinivasa Ramanujan. Soon designated as "Ramanujan's Lost Notebook," it contains considerable material on mock theta functions and undoubtedly dates from the last year of Ramanujan's life. In this book, the notebook is presented with additional material and expert commentary.
This book is devoted primarily to topics in interpolation for scalar, matrix and operator valued functions. About half the papers are based on lectures which were delivered at a conference held at Leipzig University in August 1994 to commemorate the 80th anniversary of the birth of Vladimir Petrovich Potapov. The volume also contains the English translation of several important papers relatively unknown in the West, two expository papers written especially for this volume, and historical material based on reminiscences of former colleagues, students and associates of V.P. Potapov. Numerous examples of interpolation problems of the Nevanlinna-Pick and CarathA(c)odory-FejA(c)r type are included as well as moment problems and problems of integral representation in assorted settings. The major themes cover applications of the Potapov method of fundamental matrix inequalities, multiplicative decompositions of J-inner matrix valued functions, the abstract interpolation problem, canonical systems of differential equations and interpolation in spaces with an indefinite metric. This book should appeal to a wide range of readers: mathematicians specializing in pure and applied mathematics and engineers who work in systems theory and control. The book will be of use to graduate students and mathematicians interested in functional analysis.
Complexity increases with increasing system size in everything from organisms to organizations. The nonlinear dependence of a system's functionality on its size, by means of an allometry relation, is argued to be a consequence of their joint dependency on complexity (information). In turn, complexity is proven to be the source of allometry and to provide a new kind of force entailed by a system's information gradient. Based on first principles, the scaling behavior of the probability density function is determined by the exact solution to a set of fractional differential equations. The resulting lowest order moments in system size and functionality gives rise to the empirical allometry relations. Taking examples from various topics in nature, the book is of interest to researchers in applied mathematics, as well as, investigators in the natural, social, physical and life sciences. Contents Complexity Empirical allometry Statistics, scaling and simulation Allometry theories Strange kinetics Fractional probability calculus
This book is dedicated to the memory of Israel Gohberg (1928-2009) - one of the great mathematicians of our time - who inspired innumerable fellow mathematicians and directed many students. The volume reflects the wide spectrum of Gohberg's mathematical interests. It consists of more than 25 invited and peer-reviewed original research papers written by his former students, co-authors and friends. Included are contributions to single and multivariable operator theory, commutative and non-commutative Banach algebra theory, the theory of matrix polynomials and analytic vector-valued functions, several variable complex function theory, and the theory of structured matrices and operators. Also treated are canonical differential systems, interpolation, completion and extension problems, numerical linear algebra and mathematical systems theory.
This authoritative text presents the classical theory of functions of a single complex variable in complete mathematical and historical detail. Requiring only minimal, undergraduate-level prerequisites, it covers the fundamental areas of the subject with depth, precision, and rigor. Standard and novel proofs are explored in unusual detail, and exercises - many with helpful hints - provide ample opportunities for practice and a deeper understanding of the material. In addition to the mathematical theory, the author also explores how key ideas in complex analysis have evolved over many centuries, allowing readers to acquire an extensive view of the subject's development. Historical notes are incorporated throughout, and a bibliography containing more than 2,000 entries provides an exhaustive list of both important and overlooked works. Classical Analysis in the Complex Plane will be a definitive reference for both graduate students and experienced mathematicians alike, as well as an exemplary resource for anyone doing scholarly work in complex analysis. The author's expansive knowledge of and passion for the material is evident on every page, as is his desire to impart a lasting appreciation for the subject. "I can honestly say that Robert Burckel's book has profoundly influenced my view of the subject of complex analysis. It has given me a sense of the historical flow of ideas, and has acquainted me with byways and ancillary results that I never would have encountered in the ordinary course of my work. The care exercised in each of his proofs is a model of clarity in mathematical writing...Anyone in the field should have this book on [their bookshelves] as a resource and an inspiration."- From the Foreword by Steven G. Krantz
This book presents a collection of carefully refereed research articles and lecture notes stemming from the Conference "Automorphic Forms and L-Functions", held at the University of Heidelberg in 2016. The theory of automorphic forms and their associated L-functions is one of the central research areas in modern number theory, linking number theory, arithmetic geometry, representation theory, and complex analysis in many profound ways. The 19 papers cover a wide range of topics within the scope of the conference, including automorphic L-functions and their special values, p-adic modular forms, Eisenstein series, Borcherds products, automorphic periods, and many more.
These proceedings are based on papers presented at the international conference Approximation Theory XV, which was held May 22-25, 2016 in San Antonio, Texas. The conference was the fifteenth in a series of meetings in Approximation Theory held at various locations in the United States, and was attended by 146 participants. The book contains longer survey papers by some of the invited speakers covering topics such as compressive sensing, isogeometric analysis, and scaling limits of polynomials and entire functions of exponential type. The book also includes papers on a variety of current topics in Approximation Theory drawn from areas such as advances in kernel approximation with applications, approximation theory and algebraic geometry, multivariate splines for applications, practical function approximation, approximation of PDEs, wavelets and framelets with applications, approximation theory in signal processing, compressive sensing, rational interpolation, spline approximation in isogeometric analysis, approximation of fractional differential equations, numerical integration formulas, and trigonometric polynomial approximation.
'Ht moi, ..., si j'avait su comment en revenir, One lemce mathematics has rendered the je n'y serai. point aile.' human race. It has put common sense back Jule. Verne ..... "'" it belong., on the topmost shelf next to the dusty caniller labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d' re of this series."
Mikhail Gromov introduced pseudo-holomorphic curves into symplectic geometry in 1985. Since then, pseudo-holomorphic curves have taken on great importance in many fields. The aim of this book is to present the original proof of Gromov's compactness theorem for pseudo-holomorphic curves in detail. Local properties of pseudo-holomorphic curves are investigated and proved from a geometric viewpoint. Properties of particular interest are isoperimetric inequalities, a monotonicity formula, gradient bounds and the removal of singularities. A special chapter is devoted to relevant features of hyperbolic surfaces, where pairs of pants decomposition and thickthin decomposition are described. The book is essentially self-contained and should also be accessible to students with a basic knowledge of differentiable manifolds and covering spaces.
Nevanlinna theory (or value distribution theory) in complex analysis is so beautiful that one would naturally be interested in determining how such a theory would look in the non Archimedean analysis and Diophantine approximations. There are two "main theorems" and defect relations that occupy a central place in N evanlinna theory. They generate a lot of applications in studying uniqueness of meromorphic functions, global solutions of differential equations, dynamics, and so on. In this book, we will introduce non-Archimedean analogues of Nevanlinna theory and its applications. In value distribution theory, the main problem is that given a holomorphic curve f : C -+ M into a projective variety M of dimension n and a family 01 of hypersurfaces on M, under a proper condition of non-degeneracy on f, find the defect relation. If 01 n is a family of hyperplanes on M = r in general position and if the smallest dimension of linear subspaces containing the image f(C) is k, Cartan conjectured that the bound of defect relation is 2n - k + 1. Generally, if 01 is a family of admissible or normal crossings hypersurfaces, there are respectively Shiffman's conjecture and Griffiths-Lang's conjecture. Here we list the process of this problem: A. Complex analysis: (i) Constant targets: R. Nevanlinna[98] for n = k = 1; H. Cartan [20] for n = k > 1; E. I. Nochka [99], [100],[101] for n > k ~ 1; Shiffman's conjecture partially solved by Hu-Yang [71J; Griffiths-Lang's conjecture (open).
The idea of complex numbers dates back at least 300 years-to Gauss and Euler, among others. Today complex analysis is a central part of modern analytical thinking. It is used in engineering, physics, mathematics, astrophysics, and many other fields. It provides powerful tools for doing mathematical analysis, and often yields pleasing and unanticipated answers. This book makes the subject of complex analysis accessible to a broad audience. The complex numbers are a somewhat mysterious number system that seems to come out of the blue. It is important for students to see that this is really a very concrete set of objects that has very concrete and meaningful applications. Features: This new edition is a substantial rewrite, focusing on the accessibility, applied, and visual aspect of complex analysis This book has an exceptionally large number of examples and a large number of figures. The topic is presented as a natural outgrowth of the calculus. It is not a new language, or a new way of thinking. Incisive applications appear throughout the book. Partial differential equations are used as a unifying theme.
The study of univalent functions dates back to the early years of the 20th century, and is one of the most popular research areas in complex analysis. This book is directed at introducing and bringing up to date current research in the area of univalent functions, with an emphasis on the important subclasses, thus providing an accessible resource suitable for both beginning and experienced researchers. Contents Univalent Functions - the Elementary Theory Definitions of Major Subclasses Fundamental Lemmas Starlike and Convex Functions Starlike and Convex Functions of Order Strongly Starlike and Convex Functions Alpha-Convex Functions Gamma-Starlike Functions Close-to-Convex Functions Bazilevic Functions B1( ) Bazilevic Functions The Class U( ) Convolutions Meromorphic Univalent Functions Loewner Theory Other Topics Open Problems
Second Order Differential Equations presents a classical piece of theory concerning hypergeometric special functions as solutions of second-order linear differential equations. The theory is presented in an entirely self-contained way, starting with an introduction of the solution of the second-order differential equations and then focusingon the systematic treatment and classification of these solutions. Each chapter contains a set of problems which help reinforce the theory. Some of the preliminaries are covered in appendices at the end of the book, one of which provides an introduction to Poincare-Perron theory, and the appendix also contains a new way of analyzing the asymptomatic behavior of solutions of differential equations. This textbook is appropriate for advanced undergraduate and graduate students in Mathematics, Physics, and Engineering interested in Ordinary and Partial Differntial Equations. A solutions manual is available online."
This book is related to the theory of functions of a-bounded type in the ha- plane of the complex plane. I constructed this theory by application of the Li- ville integro-differentiation. To some extent, it is similar to M.M.Djrbashian's factorization theory of the classes Na of functions of a-bounded type in the disc, as much as the well known results on different classes and spaces of regular functions in the half-plane are similar to those in the disc. Besides, the book contains improvements of several results such as the Phragmen-Lindelof Principle and Nevanlinna Factorization in the Half-Plane and offers a new, equivalent definition of the classical Hardy spaces in the half-plane. The last chapter of the book presents author's united work with G.M. Gubreev (Odessa). It gives an application of both a-theories in the disc and in the half-plane in the spectral theory of linear operators. This is a solution of a problem repeatedly stated by M.G.Krein and being of special interest for a long time. The book is proposed for a wide range of readers. Some of its parts are comprehensible for graduate students, while the book in the whole is intended for young researchers and qualified specialists in the field. |
![]() ![]() You may like...
Hardy Inequalities on Homogeneous Groups
Durvudkhan Suragan, Michael Ruzhansky
Hardcover
R1,977
Discovery Miles 19 770
Management and Applications of Complex…
G. Rzevski, S. Syngellakis
Hardcover
R2,522
Discovery Miles 25 220
Fundamentals of Complex Analysis with…
Edward Saff, Arthur Snider
Paperback
R2,293
Discovery Miles 22 930
Elements of the Infinitesimal Calculus…
James Gregory 1837-1924 Clark
Hardcover
R1,033
Discovery Miles 10 330
|