![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
This volume is an enlarged edition of a classic textbook on complex analysis. In addition to the classical material of the first edition it provides a concise and accessible treatment of Loewner theory, both in the disc and in the half-plane. Some of the new material has been described in research papers only or appears here for the first time. Each chapter ends with exercises.
The aim of the book is to give a smooth analytic continuation from calculus to complex analysis by way of plenty of practical examples and worked-out exercises. The scope ranges from applications in calculus to complex analysis in two different levels.If the reader is in a hurry, he can browse the quickest introduction to complex analysis at the beginning of Chapter 1, which explains the very basics of the theory in an extremely user-friendly way. Those who want to do self-study on complex analysis can concentrate on Chapter 1 in which the two mainstreams of the theory - the power series method due to Weierstrass and the integration method due to Cauchy - are presented in a very concrete way with rich examples. Readers who want to learn more about applied calculus can refer to Chapter 2, where numerous practical applications are provided. They will master the art of problem solving by following the step by step guidance given in the worked-out examples.This book helps the reader to acquire fundamental skills of understanding complex analysis and its applications. It also gives a smooth introduction to Fourier analysis as well as a quick prelude to thermodynamics and fluid mechanics, information theory, and control theory. One of the main features of the book is that it presents different approaches to the same topic that aids the reader to gain a deeper understanding of the subject.
The scope of this book is the field of evolutionary genetics. The book contains new methods for simulating evolution at the genomic level. It sets out applications using up to date Monte Carlo simulation methods applied in classical population genetics, and sets out new fields of quantifying mutation and selection at the Mendelian level. A serious limitation of Wright-Fisher process, the assumption that population size is constant, motivated the introduction of self regulating branching processes in this book. While providing a short review of the principles of probability and its application and using computer intensive methods whilst applying these principles, this book explains how it is possible to derive new formulas expressed in terms of matrix algebra providing new insights into the classical Wright-Fisher processes of evolutionary genetics. Also covered are the development of new methods for studying genetics and evolution, simulating nucleotide substitutions of a DNA molecule and on self regulating branching processes. Components of natural selection are studied in terms of reproductive success of each genotype whilst also studying the differential ability of genotypes to compete for resources and sexual selection. The concept of the gene is also reviewed in this book, and it provides a current definition of a gene based on very recent experiments with micro-array technologies. A development of stochastic models for simulating the evolution of model genomes concludes the studies in this book. Deserving of a place on the book shelves of workers in biomathematics, applied probability, stochastic processes and statistics, as well as in bioinformatics and phylogenetics, it will also be relevant to those interested in computer simulation, and evolutionary biologists interested in quantitative methods.
This book investigates several classes of partial differential equations of real time variable and complex spatial variables, including the heat, Laplace, wave, telegraph, Burgers, Black-Merton-Scholes, Schroedinger and Korteweg-de Vries equations.The complexification of the spatial variable is done by two different methods. The first method is that of complexifying the spatial variable in the corresponding semigroups of operators. In this case, the solutions are studied within the context of the theory of semigroups of linear operators. It is also interesting to observe that these solutions preserve some geometric properties of the boundary function, like the univalence, starlikeness, convexity and spirallikeness. The second method is that of complexifying the spatial variable directly in the corresponding evolution equation from the real case. More precisely, the real spatial variable is replaced by a complex spatial variable in the corresponding evolution equation and then analytic and non-analytic solutions are sought.For the first time in the book literature, we aim to give a comprehensive study of the most important evolution equations of real time variable and complex spatial variables. In some cases, potential physical interpretations are presented. The generality of the methods used allows the study of evolution equations of spatial variables in general domains of the complex plane.
Handbook of Analytic Operator Theory thoroughly covers the subject of holomorphic function spaces and operators acting on them. The spaces covered include Bergman spaces, Hardy spaces, Fock spaces and the Drury-Averson space. Operators discussed in the book include Toeplitz operators, Hankel operators, composition operators, and Cowen-Douglas class operators. The volume consists of eleven articles in the general area of analytic function spaces and operators on them. Each contributor focuses on one particular topic, for example, operator theory on the Drury-Aversson space, and presents the material in the form of a survey paper which contains all the major results in the area and includes all relevant references. The overalp between this volume and existing books in the area is minimal. The material on two-variable weighted shifts by Curto, the Drury-Averson space by Fang and Xia, the Cowen-Douglas class by Misra, and operator theory on the bi-disk by Yang has never appeared in book form before. Features: The editor of the handbook is a widely known and published researcher on this topic The handbook's contributors are a who's=who of top researchers in the area The first contributed volume on these diverse topics
The aim of the book is to give a smooth analytic continuation from calculus to complex analysis by way of plenty of practical examples and worked-out exercises. The scope ranges from applications in calculus to complex analysis in two different levels.If the reader is in a hurry, he can browse the quickest introduction to complex analysis at the beginning of Chapter 1, which explains the very basics of the theory in an extremely user-friendly way. Those who want to do self-study on complex analysis can concentrate on Chapter 1 in which the two mainstreams of the theory - the power series method due to Weierstrass and the integration method due to Cauchy - are presented in a very concrete way with rich examples. Readers who want to learn more about applied calculus can refer to Chapter 2, where numerous practical applications are provided. They will master the art of problem solving by following the step by step guidance given in the worked-out examples.This book helps the reader to acquire fundamental skills of understanding complex analysis and its applications. It also gives a smooth introduction to Fourier analysis as well as a quick prelude to thermodynamics and fluid mechanics, information theory, and control theory. One of the main features of the book is that it presents different approaches to the same topic that aids the reader to gain a deeper understanding of the subject.
Linear differential equations with periodic coefficients constitute a well developed part of the theory of ordinary differential equations [17, 94, 156, 177, 178, 272, 389]. They arise in many physical and technical applications [177, 178, 272]. A new wave of interest in this subject has been stimulated during the last two decades by the development of the inverse scattering method for integration of nonlinear differential equations. This has led to significant progress in this traditional area [27, 71, 72, 111 119, 250, 276, 277, 284, 286, 287, 312, 313, 337, 349, 354, 392, 393, 403, 404]. At the same time, many theoretical and applied problems lead to periodic partial differential equations. We can mention, for instance, quantum mechanics [14, 18, 40, 54, 60, 91, 92, 107, 123, 157-160, 192, 193, 204, 315, 367, 412, 414, 415, 417], hydrodynamics [179, 180], elasticity theory [395], the theory of guided waves [87-89, 208, 300], homogenization theory [29, 41, 348], direct and inverse scattering [175, 206, 216, 314, 388, 406-408], parametric resonance theory [122, 178], and spectral theory and spectral geometry [103 105, 381, 382, 389]. There is a sjgnificant distinction between the cases of ordinary and partial differential periodic equations. The main tool of the theory of periodic ordinary differential equations is the so-called Floquet theory [17, 94, 120, 156, 177, 267, 272, 389]. Its central result is the following theorem (sometimes called Floquet-Lyapunov theorem) [120, 267].
This book presents the relationship between classical theta functions and knots. It is based on a novel idea of Razvan Gelca and Alejandro Uribe, which converts Weil's representation of the Heisenberg group on theta functions to a knot theoretical framework, by giving a topological interpretation to a certain induced representation. It also explains how the discrete Fourier transform can be related to 3- and 4-dimensional topology.Theta Functions and Knots can be read in two perspectives. Readers with an interest in theta functions or knot theory can learn how the two are related. Those interested in Chern-Simons theory will find here an introduction using the simplest case, that of abelian Chern-Simons theory. Moreover, the construction of abelian Chern-Simons theory is based entirely on quantum mechanics and not on quantum field theory as it is usually done.Both the theory of theta functions and low dimensional topology are presented in detail, in order to underline how deep the connection between these two fundamental mathematical subjects is. Hence the book is self-contained with a unified presentation. It is suitable for an advanced graduate course, as well as for self-study.
This book contains the contributions by the participants in the nine of a series of workshops. Throughout the series of workshops, the contributors are consistently aiming at higher achievements of studies of the current topics in complex analysis, differential geometry and mathematical physics and further in any intermediate areas, with expectation of discovery of new research directions. Concerning the present one, it is worthwhile to mention that, in addition to the new developments of the traditional trends, many attractive and pioneering works were presented and their results were contributed to the present volume. The contents of this volume therefore will provide not only significant and useful information for researchers in complex analysis, differential geometry and mathematical physics (including their related areas), but also interesting mathematics for non-specialists and a broad audience. The present volume contains new developments and trends in the studies on constructions of holomorphic Cliffordian functions; the swelling constructions of minimal surfaces with higher genus in flat tori; the spectral properties of soliton equations on symmetric spaces; new types of shallow water waves described by Camassa-Holm type equations, the properties of pseudo-hermitian boson and fermion coherent states; fractals and chaos on orthorhombic lattices, and even an ambitious proposal of a graph model for Kaehler manifolds with Kaehler magnetic fields.
This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises, motivating examples, and real-world applicationsmake the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry."
This book consists of five chapters presenting problems of current research in mathematics, with its history and development, current state, and possible future direction. Four of the chapters are expository in nature while one is based more directly on research. All deal with important areas of mathematics, however, such as algebraic geometry, topology, partial differential equations, Riemannian geometry, and harmonic analysis. This book is addressed to researchers who are interested in those subject areas. Young-Hoon Kiem discusses classical enumerative geometry before string theory and improvements after string theory as well as some recent advances in quantum singularity theory, Donaldson-Thomas theory for Calabi-Yau 4-folds, and Vafa-Witten invariants. Dongho Chae discusses the finite-time singularity problem for three-dimensional incompressible Euler equations. He presents Kato's classical local well-posedness results, Beale-Kato-Majda's blow-up criterion, and recent studies on the singularity problem for the 2D Boussinesq equations. Simon Brendle discusses recent developments that have led to a complete classification of all the singularity models in a three-dimensional Riemannian manifold. He gives an alternative proof of the classification of noncollapsed steady gradient Ricci solitons in dimension 3. Hyeonbae Kang reviews some of the developments in the Neumann-Poincare operator (NPO). His topics include visibility and invisibility via polarization tensors, the decay rate of eigenvalues and surface localization of plasmon, singular geometry and the essential spectrum, analysis of stress, and the structure of the elastic NPO. Danny Calegari provides an explicit description of the shift locus as a complex of spaces over a contractible building. He describes the pieces in terms of dynamically extended laminations and of certain explicit "discriminant-like" affine algebraic varieties.
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology.The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations.The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses.
This book is devoted to the phenomenon of synchronization and its application for determining the values of Lyapunov exponents. In recent years, the idea of synchronization has become an object of great interest in many areas of science, e.g., biology and communication or laser physics. Over the last decade, a number of new types of synchronization have been identified and some interesting new ideas concerning the synchronization have also appeared. This book presents the complete synchronization problem rather than just results from the research. The problem is demonstrated in relation to a kind of coupling applied between dynamical systems, whereby a unique classification of possible couplings is introduced. Another novel feature is the connection presented between synchronization and the problem of determining the Lyapunov exponents, especially for non-differentiable systems. A detailed proposal of such an estimation method and examples of its application are included.
This volume contains contributions of principal speakers of the symposium on geometry and analysis of automorphic forms of several variables, held in September 2009 at Tokyo, Japan, in honor of Takayuki Oda's 60th birthday. It presents both research and survey articles in the fields that are the main themes of his work. The volume may serve as a guide to developing areas as well as a resource for researchers who seek a broader view and for students who are beginning to explore automorphic form.
This volume is dedicated to the memory of the outstanding mathematician S.Ya. Khavinson. It begins with an expository paper by V.P. Havin presenting a comprehensive survey of Khavinson's works as well as certain biographical material. The complete bibliography following this paper has not previously been published anywhere. It consists of 163 items; a considerable part of these cannot be found in easily accessible sources. The book also contains a series of photographs and twelve original peer-reviewed research and expository papers by leading mathematicians worldwide, including the joint paper by S.Ya. Khavinson and T.S. Kuzina (the last publication of S.Ya. Khavinson).
This careful selection of participant contributions reflects the focus of the 14th International Conference on Operator Theory, held in Timisoara (Romania) in June 1992, centering on the problems of extensions of operators and their connections with interpolation of analytic functions and with the spectral theory of differential operators. Other topics concern operator inequalities, spectral theory in general spaces and operator theory in Krein spaces.
Complex Analysis: Conformal Inequalities and the Bieberbach Conjecture discusses the mathematical analysis created around the Bieberbach conjecture, which is responsible for the development of many beautiful aspects of complex analysis, especially in the geometric-function theory of univalent functions. Assuming basic knowledge of complex analysis and differential equations, the book is suitable for graduate students engaged in analytical research on the topics and researchers working on related areas of complex analysis in one or more complex variables. The author first reviews the theory of analytic functions, univalent functions, and conformal mapping before covering various theorems related to the area principle and discussing Loewner theory. He then presents Schiffer's variation method, the bounds for the fourth and higher-order coefficients, various subclasses of univalent functions, generalized convexity and the class of -convex functions, and numerical estimates of the coefficient problem. The book goes on to summarize orthogonal polynomials, explore the de Branges theorem, and address current and emerging developments since the de Branges theorem.
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology.The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations.The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses.
This heavily illustrated book collects in one source most of the mathematically simple systems of differential equations whose solutions are chaotic. It includes the historically important systems of van der Pol, Duffing, Ueda, Lorenz, Rössler, and many others, but it goes on to show that there are many other systems that are simpler and more elegant. Many of these systems have been only recently discovered and are not widely known. Most cases include plots of the attractor and calculations of the spectra of Lyapunov exponents. Some important cases include graphs showing the route to chaos. The book includes many cases not previously published as well as examples of simple electronic circuits that exhibit chaos.No existing book thus far focuses on mathematically elegant chaotic systems. This book should therefore be of interest to chaos researchers looking for simple systems to use in their studies, to instructors who want examples to teach and motivate students, and to students doing independent study.
Highly topical and original monograph, introducing the author's work on the Riemann zeta function and its adelic interpretation of interest to a wide range of mathematicians and physicists.
native settlement, in 1950 he graduated - as an extramural studen- from Groznyi Teachers College and in 1957 from Rostov University. He taught mathematics in Novocherkask Polytechnic Institute and its branch in the town of Shachty. That was when his mathematical talent blossomed and he obtained the main results given in the present monograph. In 1969 N. V. Govorov received the degree of Doctor of Mathematics and the aca demic rank of a Professor. From 1970 until his tragic death on 24 April 1981, N. V. Govorov worked as Head of the Department of Mathematical Anal ysis of Kuban' University actively engaged in preparing new courses and teaching young mathematicians. His original mathematical talent, vivid reactions, kindness bordering on self-sacrifice made him highly respected by everybody who knew him. In preparing this book for publication I was given substantial assistance by E. D. Fainberg and A. I. Heifiz, while V. M. Govorova took a significant part of the technical work with the manuscript. Professor C. Prather con tributed substantial assistance in preparing the English translation of the book. I. V. Ostrovskii. PREFACE The classic statement of the Riemann boundary problem consists in finding a function (z) which is analytic and bounded in two domains D+ and D-, with a common boundary - a smooth closed contour L admitting a continuous extension onto L both from D+ and D- and satisfying on L the boundary condition +(t) = G(t)-(t) + g(t).
Based on a series of graduate lectures given by Vladimir Markovic at the University of Warwick in spring 2003, this book is accessible to those with a grounding in complex analysis looking for an introduction to the theory of quasiconformal maps and Teichm ller theory. Assuming some familiarity with Riemann surfaces and hyperbolic geometry, topics covered include the Gr tzch argument, analytical properties of quasiconformal maps, the Beltrami differential equation, holomorphic motions and Teichm ller spaces. Where proofs are omitted, references to where they may be found are always given, and the text is clearly illustrated throughout with diagrams, examples, and exercises for the reader.
This review volume, co-edited by Nobel laureate G Ertl, provides a broad overview on current studies in the understanding of design and control of complex chemical systems of various origins, on scales ranging from single molecules and nano-phenomena to macroscopic chemical reactors. Self-organizational behavior and the emergence of coherent collective dynamics in reaction diffusion systems, reactive soft matter and chemical networks are covered. Special attention is paid to the applications in molecular cell biology and to the problems of biological evolution, synthetic biology and design of artificial living cells. Starting with a detailed introduction on the history of research on complex chemical systems, its current state of the art and perspectives, the book comprises 19 chapters that survey the current progress in particular research fields. The reviews, prepared by leading international experts, yield together a fascinating picture of a rapidly developing research discipline that brings chemical engineering to new frontiers.
The origins of Schur analysis lie in a 1917 article by Issai Schur in which he constructed a numerical sequence to correspond to a holomorphic contractive function on the unit disk. These sequences are now known as Schur parameter sequences. Schur analysis has grown significantly since its beginnings in the early twentieth century and now encompasses a wide variety of problems related to several classes of holomorphic functions and their matricial generalizations. These problems include interpolation and moment problems as well as Schur parametrization of particular classes of contractive or nonnegative Hermitian block matrices. This book is primarily devoted to topics related to matrix versions of classical interpolation and moment problems. The major themes include Schur analysis of nonnegative Hermitian block Hankel matrices and the construction of Schur-type algorithms. This book also covers a number of recent developments in orthogonal rational matrix functions, matrix-valued Caratheodory functions and maximal weight solutions for particular matricial moment problems on the unit circle.
A Kleinian group is a discrete subgroup of the isometry group of hyperbolic 3-space, which is also regarded as a subgroup of Moebius transformations in the complex plane. The present book is a comprehensive guide to theories of Kleinian groups from the viewpoints of hyperbolic geometry and complex analysis. After 1960, Ahlfors and Bers were the leading researchers of Kleinian groups and helped it to become an active area of complex analysis as a branch of Teichmuller theory. Later, Thurston brought a revolution to this area with his profound investigation of hyperbolic manifolds, and at the same time complex dynamical approach was strongly developed by Sullivan. This book provides fundamental results and important theorems which are needed for access to the frontiers of the theory from a modern viewpoint. |
![]() ![]() You may like...
Translation Quality Assessment - From…
Joss Moorkens, Sheila Castilho, …
Hardcover
R4,984
Discovery Miles 49 840
Adaptation and Human Behavior - An…
Lee Cronk, Napoleon A Chagnon, …
Hardcover
R4,586
Discovery Miles 45 860
New Frontiers in Photochromism
Masahiro Irie, Yasushi Yokoyama, …
Hardcover
R5,138
Discovery Miles 51 380
Attractors and Higher Dimensions in…
Gennadiy Vladimirovich Zhizhin
Hardcover
R4,687
Discovery Miles 46 870
Liquid Crystal Display Drivers…
David J.R. Cristaldi, Salvatore Pennisi, …
Hardcover
R3,071
Discovery Miles 30 710
Semantic Analysis of Verbal Collocations…
Alexander Gelbukh, Olga Kolesnikova
Hardcover
R4,573
Discovery Miles 45 730
|